5. Exercises
From Förberedande kurs i matematik 1
(Difference between revisions)
Line 56: | Line 56: | ||
}\right.</math> | }\right.</math> | ||
|d) | |d) | ||
- | || <math>\ | + | || <math>\sqrt{2 + \sqrt{4}}\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\</math> |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 5.1:3}} | </div>{{#NAVCONTENT:Answer|Answer 5.1:3}} |
Revision as of 12:59, 22 January 2009
Theory | Exercises |
Exercise 5:1
Write the formulas in TeX , you can test your text in the editor to your individual assignment.
a) | \displaystyle \displaystyle\frac{a+b}{d-c} | b) | \displaystyle \sqrt{3} |
c) | \displaystyle 4x^2 - x | d) | \displaystyle \sin^2 x + \cos x |
Answer
Exercise 5:2
Write the formulas in TeX
a) | \displaystyle x^3y^2\left(\displaystyle \frac{1}{y} - \frac{1}{xy}+1\right) | b) | \displaystyle \left(x-y+\displaystyle\frac{x^2}{y-x}\right) \left(\displaystyle\frac{y}{2x-y}-1\right) |
c) | \displaystyle \displaystyle\frac{a-b+\displaystyle\frac{b^2}{a+b}}{1-\left(\displaystyle\frac{a-b}{a+b}\right)^2} | d) | \displaystyle \displaystyle \frac{1}{1+\displaystyle \frac{1}{1+\displaystyle \frac{1}{1+x}}} |
Answer
Exercise 5:3
Write the formulas in TeX
a) | \displaystyle \cos{v} = \cos{\displaystyle \frac{3\pi}{2}} | b) | \displaystyle \tan\displaystyle\frac{u}{2}=\frac{\sin u}{1+\cos u} |
c) | \displaystyle \left\{\eqalign{
x&=n\pi\cr x&=\displaystyle \frac{\pi}{4}+\displaystyle \frac{n\pi}{2} }\right. | d) | \displaystyle \sqrt{2 + \sqrt{4}}\bigl(\sqrt[\scriptstyle4]3\,\bigr)^3\ |
Answer