Solution 4.2:1a
From Förberedande kurs i matematik 1
(Difference between revisions)
m |
|||
Line 1: | Line 1: | ||
- | [[Image:4_2_1_a.gif|center]] | ||
- | |||
- | |||
- | |||
The definition of the tangent states that | The definition of the tangent states that | ||
- | + | {| width="100%" | |
- | + | | width="50%" align="center"|<math>\tan u=\frac{\text{opposite}}{\text{adjacent}}</math> | |
- | <math>\tan u=\frac{\text{opposite}}{\text{adjacent}}</math> | + | | width="50%" align="center"|[[Image:4_2_1_a.gif]] |
- | + | |} | |
In our case, this means that | In our case, this means that | ||
+ | {{Displayed math||<math>\tan 27^{\circ} = \frac{x}{13}</math>}} | ||
- | + | which gives <math>x = 13\cdot \tan 27^{\circ}\,</math>. | |
- | + | ||
- | + | ||
- | which gives | + | |
- | <math>x= | + | |
- | NOTE: Using a calculator, we can work out what | ||
- | <math>x\text{ }</math> | ||
- | should be: | ||
+ | Note: Using a calculator, we can work out what ''x'' should be, | ||
- | <math>x= | + | {{Displayed math||<math>x = 13\cdot\tan 27^{\circ} \approx 6\textrm{.}62\,\textrm{.}</math>}} |
Current revision
The definition of the tangent states that
\displaystyle \tan u=\frac{\text{opposite}}{\text{adjacent}} | ![]() |
In our case, this means that
\displaystyle \tan 27^{\circ} = \frac{x}{13} |
which gives \displaystyle x = 13\cdot \tan 27^{\circ}\,.
Note: Using a calculator, we can work out what x should be,
\displaystyle x = 13\cdot\tan 27^{\circ} \approx 6\textrm{.}62\,\textrm{.} |