Solution 3.4:3a
From Förberedande kurs i matematik 1
m   | 
			|||
| Line 1: | Line 1: | ||
| - | Both left- and right-hand sides are positive for all values of   | + | Both left- and right-hand sides are positive for all values of ''x'' and this means that we can take the logarithm of both sides and get a more manageable equation,  | 
| - | + | ||
| - | and this means that we can take the logarithm of both sides and get a more manageable equation  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \text{LHS} &= \ln 2^{-x^{2}} = -x^{2}\cdot \ln 2\,,\\[5pt]  | ||
| + | \text{RHS} &= \ln \bigl(2e^{2x}\bigr) = \ln 2 + \ln e^{2x} = \ln 2 + 2x\cdot \ln e = \ln 2 + 2x\cdot 1\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
After a little rearranging, the equation becomes  | After a little rearranging, the equation becomes  | ||
| + | {{Displayed math||<math>x^{2}+\frac{2}{\ln 2}x+1=0\,\textrm{.}</math>}}  | ||
| - | + | We complete the square of the left-hand side,  | |
| - | + | {{Displayed math||<math>\Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} - \Bigl(\frac{1}{\ln 2} \Bigr)^{2} + 1 = 0\,,</math>}}  | |
| + | and move the constant terms over to the right-hand side,  | ||
| - | <math>\  | + | {{Displayed math||<math>\Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} = \Bigl(\frac{1}{\ln 2} \Bigr)^{2} - 1\,\textrm{.}</math>}}  | 
| - | + | It can be difficult to see whether the right-hand side is positive or not, but if we remember that <math>e > 2</math> and that thus <math>\ln 2 < \ln e = 1\,</math>, we must have that <math>(1/\ln 2)^{2} > 1\,</math>, i.e. the right-hand side is positive.  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | It can be difficult to see whether the right-hand side is positive or not, but if we remember that   | + | |
| - | <math>e>2</math>  | + | |
| - | and that thus   | + | |
| - | <math>\  | + | |
| - | <math>  | + | |
The equation therefore has the solutions  | The equation therefore has the solutions  | ||
| - | + | {{Displayed math||<math>x=-\frac{1}{\ln 2}\pm \sqrt{\Bigl(\frac{1}{\ln 2} \Bigr)^{2}-1}\,,</math>}}  | |
| - | <math>x=-\frac{1}{\ln 2}\pm \sqrt{\  | + | |
| - | + | ||
which can also be written as  | which can also be written as  | ||
| - | + | {{Displayed math||<math>x=\frac{-1\pm \sqrt{1-(\ln 2)^{2}}}{\ln 2}\,\textrm{.}</math>}}  | |
| - | <math>x=\frac{-1\pm \sqrt{1-  | + | |
Current revision
Both left- and right-hand sides are positive for all values of x and this means that we can take the logarithm of both sides and get a more manageable equation,
| \displaystyle \begin{align}
 \text{LHS} &= \ln 2^{-x^{2}} = -x^{2}\cdot \ln 2\,,\\[5pt] \text{RHS} &= \ln \bigl(2e^{2x}\bigr) = \ln 2 + \ln e^{2x} = \ln 2 + 2x\cdot \ln e = \ln 2 + 2x\cdot 1\,\textrm{.} \end{align}  | 
After a little rearranging, the equation becomes
| \displaystyle x^{2}+\frac{2}{\ln 2}x+1=0\,\textrm{.} | 
We complete the square of the left-hand side,
| \displaystyle \Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} - \Bigl(\frac{1}{\ln 2} \Bigr)^{2} + 1 = 0\,, | 
and move the constant terms over to the right-hand side,
| \displaystyle \Bigl(x+\frac{1}{\ln 2}\Bigr)^{2} = \Bigl(\frac{1}{\ln 2} \Bigr)^{2} - 1\,\textrm{.} | 
It can be difficult to see whether the right-hand side is positive or not, but if we remember that \displaystyle e > 2 and that thus \displaystyle \ln 2 < \ln e = 1\,, we must have that \displaystyle (1/\ln 2)^{2} > 1\,, i.e. the right-hand side is positive.
The equation therefore has the solutions
| \displaystyle x=-\frac{1}{\ln 2}\pm \sqrt{\Bigl(\frac{1}{\ln 2} \Bigr)^{2}-1}\,, | 
which can also be written as
| \displaystyle x=\frac{-1\pm \sqrt{1-(\ln 2)^{2}}}{\ln 2}\,\textrm{.} | 
