Solution 3.3:6b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | The logarithm   | + | The logarithm <math>\lg 46</math> satisfies the relation  | 
| - | <math>\  | + | |
| - | satisfies the relation  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>10^{\lg 46} = 46</math>}}  | ||
and taking the natural logarithm of both sides, we obtain  | and taking the natural logarithm of both sides, we obtain  | ||
| + | {{Displayed math||<math>\ln 10^{\lg 46 } = \ln 46\,\textrm{.}</math>}}  | ||
| - | + | If we use the logarithm law, <math>\lg a^b = b\cdot\lg a</math>, on the left-hand side, the equality becomes  | |
| - | + | ||
| - | + | ||
| - | If we use the logarithm law,   | + | |
| - | <math>\lg a^  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>\lg 46\cdot\ln 10 = \ln 46\,\textrm{.}</math>}}  | ||
This shows that  | This shows that  | ||
| + | {{Displayed math||<math>\lg 46 = \frac{\ln 46}{\ln 10} = \frac{3\textrm{.}828641\,\ldots}{2\textrm{.}302585\,\ldots} = 1\textrm{.}6627578\,\ldots</math>}}  | ||
| - | + | and the answer is 1.663.  | |
| - | + | ||
| - | + | ||
| - | and the answer is   | + | |
| - | + | ||
| - | NOTE: In order to calculate the answer on a calculator, you press   | ||
| + | Note: In order to calculate the answer on the calculator, you press   | ||
| - | <  | + | <center>  | 
| - | &   | + | {|  | 
| - | &   | + | ||  | 
| - | + | {| border="1" cellpadding="3" cellspacing="0"  | |
| + | |width="30px" align="center"|4  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|6  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|÷  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|1  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"   | ||
| + | |width="30px" align="center"|0  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"   | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"   | ||
| + | |width="30px" align="center"|=  | ||
| + | |}  | ||
| + | |}  | ||
| + | </center>  | ||
Current revision
The logarithm \displaystyle \lg 46 satisfies the relation
| \displaystyle 10^{\lg 46} = 46 | 
and taking the natural logarithm of both sides, we obtain
| \displaystyle \ln 10^{\lg 46 } = \ln 46\,\textrm{.} | 
If we use the logarithm law, \displaystyle \lg a^b = b\cdot\lg a, on the left-hand side, the equality becomes
| \displaystyle \lg 46\cdot\ln 10 = \ln 46\,\textrm{.} | 
This shows that
| \displaystyle \lg 46 = \frac{\ln 46}{\ln 10} = \frac{3\textrm{.}828641\,\ldots}{2\textrm{.}302585\,\ldots} = 1\textrm{.}6627578\,\ldots | 
and the answer is 1.663.
Note: In order to calculate the answer on the calculator, you press 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | 
