Solution 2.1:2e
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_2e.gif </center> {{NAVCONTENT_STOP}})  | 
				|||
| Line 1: | Line 1: | ||
{{NAVCONTENT_START}}  | {{NAVCONTENT_START}}  | ||
| - | <center> [[Bild:2_1_2e.gif]] </center>  | + | We expand the two quadratics using the squaring rule, and then sum the result.  | 
| + | |||
| + | <math> \qquad \begin{align}(a+b)^2+(a-b)^2 &= (a^2+2ab+b^2)+(a^2-2ab+b^2)\\  | ||
| + | &= a^2+2ab+b^2+a^2-2ab+b^2 \\  | ||
| + | &= a^2+a^2+2ab-2ab+b^2+b^2\\  | ||
| + | &= 2a^2 +2b^2  | ||
| + | \end{align}  | ||
| + | </math>  | ||
| + | <!--<center> [[Bild:2_1_2e.gif]] </center>-->  | ||
{{NAVCONTENT_STOP}}  | {{NAVCONTENT_STOP}}  | ||
Revision as of 13:04, 13 August 2008
We expand the two quadratics using the squaring rule, and then sum the result.
\displaystyle \qquad \begin{align}(a+b)^2+(a-b)^2 &= (a^2+2ab+b^2)+(a^2-2ab+b^2)\\ &= a^2+2ab+b^2+a^2-2ab+b^2 \\ &= a^2+a^2+2ab-2ab+b^2+b^2\\ &= 2a^2 +2b^2 \end{align}
