Solution 4.3:4d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.3:4d moved to Solution 4.3:4d: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | With the formula for double angles and the Pythagorean identity  | 
| - | <  | + | <math>\cos ^{2}v+\sin ^{2}v=1</math>, we can express   | 
| - | {{  | + | <math>\text{cos 2}v\text{ }</math>  | 
| + | in terms of   | ||
| + | <math>\text{cos }v</math>,  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \text{cos 2}v=\cos ^{2}v-\sin ^{2}v=\cos ^{2}v-\left( 1-\cos ^{2}v \right) \\   | ||
| + | & =2\cos ^{2}v-1=2b^{2}-1 \\   | ||
| + | \end{align}</math>  | ||
Revision as of 11:48, 29 September 2008
With the formula for double angles and the Pythagorean identity \displaystyle \cos ^{2}v+\sin ^{2}v=1, we can express \displaystyle \text{cos 2}v\text{ } in terms of \displaystyle \text{cos }v,
\displaystyle \begin{align}
& \text{cos 2}v=\cos ^{2}v-\sin ^{2}v=\cos ^{2}v-\left( 1-\cos ^{2}v \right) \\ 
& =2\cos ^{2}v-1=2b^{2}-1 \\ 
\end{align}
