Solution 4.2:1a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.2:1a moved to Solution 4.2:1a: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{NAVCONTENT_START}}  | ||
| - | <center> [[Image:4_2_1a.gif]] </center>  | ||
| - | {{NAVCONTENT_STOP}}  | ||
[[Image:4_2_1_a.gif|center]]  | [[Image:4_2_1_a.gif|center]]  | ||
| + | |||
| + | |||
| + | |||
| + | The definition of the tangent states that  | ||
| + | |||
| + | |||
| + | |||
| + | <math>\tan u=\frac{\text{opposite}}{\text{adjacent}}</math>  | ||
| + | |||
| + | |||
| + | In our case, this means that  | ||
| + | |||
| + | |||
| + | <math>\tan 27^{\circ }=\frac{x}{13}</math>  | ||
| + | |||
| + | |||
| + | which gives   | ||
| + | <math>x=\text{13}\centerdot \text{tan 27}^{\circ }</math>.  | ||
| + | |||
| + | NOTE: Using a calculator, we can work out what   | ||
| + | <math>x\text{ }</math>  | ||
| + | should be:  | ||
| + | |||
| + | |||
| + | <math>x=\text{13}\centerdot \text{tan 27}^{\circ }\approx 6.62</math>  | ||
Revision as of 10:27, 28 September 2008
The definition of the tangent states that
  	
\displaystyle \tan u=\frac{\text{opposite}}{\text{adjacent}}
In our case, this means that
\displaystyle \tan 27^{\circ }=\frac{x}{13}
which gives 
\displaystyle x=\text{13}\centerdot \text{tan 27}^{\circ }.
NOTE: Using a calculator, we can work out what \displaystyle x\text{ } should be:
\displaystyle x=\text{13}\centerdot \text{tan 27}^{\circ }\approx 6.62

