Solution 4.1:1
From Förberedande kurs i matematik 1
m  (Lösning 4.1:1 moved to Solution 4.1:1: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | The only thing we really need to remember is that one turn corresponds to   | 
| - | <  | + | <math>\text{36}0^{\text{o}}</math>  | 
| - | {{  | + | or   | 
| + | <math>\text{2}\pi </math>  | ||
| + | radians. Then we get:  | ||
| + | |||
| + | a)  	  | ||
| + | <math>\frac{1}{4}</math>  | ||
| + | turn    | ||
| + | <math>=\frac{1}{4}\centerdot 360^{\circ }=90^{\circ }</math>  | ||
| + | and  | ||
| + | |||
| + | <math>\frac{1}{4}</math>  | ||
| + | turn    | ||
| + | <math>=\frac{1}{4}\centerdot 2\pi </math>  | ||
| + | radians    | ||
| + | <math>=\frac{\pi }{2}</math>  | ||
| + | radians,  | ||
| + | |||
| + | |||
| + | b)  	  | ||
| + | <math>\frac{3}{8}</math>  | ||
| + | turn    | ||
| + | <math>=\frac{3}{8}\centerdot 360^{\circ }=135^{\circ }</math>  | ||
| + | and  | ||
| + | |||
| + | <math>\frac{3}{8}</math>  | ||
| + | turn    | ||
| + | <math>=\frac{3}{8}\centerdot 2\pi </math>  | ||
| + | radians    | ||
| + | <math>=\frac{3\pi }{4}</math>  | ||
| + | radians,  | ||
| + | |||
| + | |||
| + | |||
| + | c)  	  | ||
| + | <math>-\frac{2}{3}</math>  | ||
| + | turn    | ||
| + | <math>=-\frac{2}{3}\centerdot 360^{\circ }=-240^{\circ }</math>  | ||
| + | and  | ||
| + | |||
| + | <math>-\frac{2}{3}</math>  | ||
| + | turn    | ||
| + | <math>=-\frac{2}{3}\centerdot 2\pi </math>  | ||
| + | radians    | ||
| + | <math>=-\frac{4\pi }{3}</math>  | ||
| + | radians,  | ||
| + | |||
| + | |||
| + | d)  	  | ||
| + | <math>\frac{97}{12}</math>  | ||
| + | turn    | ||
| + | <math>=\frac{97}{12}\centerdot 360^{\circ }=2910^{\circ }</math>  | ||
| + | and  | ||
| + | |||
| + | <math>\frac{97}{12}</math>  | ||
| + | turn    | ||
| + | <math>=\frac{97}{12}\centerdot 2\pi </math>  | ||
| + | radians    | ||
| + | <math>=\frac{97\pi }{6}</math>  | ||
| + | radians,  | ||
Revision as of 12:31, 26 September 2008
The only thing we really need to remember is that one turn corresponds to \displaystyle \text{36}0^{\text{o}} or \displaystyle \text{2}\pi radians. Then we get:
a) \displaystyle \frac{1}{4} turn \displaystyle =\frac{1}{4}\centerdot 360^{\circ }=90^{\circ } and
\displaystyle \frac{1}{4} turn \displaystyle =\frac{1}{4}\centerdot 2\pi radians \displaystyle =\frac{\pi }{2} radians,
b)  	
\displaystyle \frac{3}{8}
turn  
\displaystyle =\frac{3}{8}\centerdot 360^{\circ }=135^{\circ }
and
\displaystyle \frac{3}{8} turn \displaystyle =\frac{3}{8}\centerdot 2\pi radians \displaystyle =\frac{3\pi }{4} radians,
     
c) \displaystyle -\frac{2}{3} turn \displaystyle =-\frac{2}{3}\centerdot 360^{\circ }=-240^{\circ } and
\displaystyle -\frac{2}{3} turn \displaystyle =-\frac{2}{3}\centerdot 2\pi radians \displaystyle =-\frac{4\pi }{3} radians,
d)  	
\displaystyle \frac{97}{12}
turn  
\displaystyle =\frac{97}{12}\centerdot 360^{\circ }=2910^{\circ }
and
\displaystyle \frac{97}{12} turn \displaystyle =\frac{97}{12}\centerdot 2\pi radians \displaystyle =\frac{97\pi }{6} radians,
