Solution 3.4:2a
From Förberedande kurs i matematik 1
m  (Lösning 3.4:2a moved to Solution 3.4:2a: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | The left-hand side is "  | 
| - | <  | + | <math>\text{2}</math>  | 
| - | {{  | + | raised to something", and therefore a positive number regardless of whatever value the exponent has. We can therefore take the log of both sides,  | 
| + | |||
| + | |||
| + | <math>\ln 2^{x^{2}-2}=\ln 1</math>  | ||
| + | |||
| + | and use the log law   | ||
| + | <math>\lg a^{b}=b\centerdot \lg a</math>  | ||
| + | to get the exponent    | ||
| + | <math>x^{\text{2}}-\text{2 }</math>  | ||
| + | as a factor on the left-hand side  | ||
| + | |||
| + | |||
| + | <math>\left( x^{\text{2}}-\text{2 } \right)\ln 2=\ln 1</math>  | ||
| + | |||
| + | |||
| + | Because   | ||
| + | <math>e^{0}=1</math>, so   | ||
| + | <math>\text{ln 1}=0</math>, giving:  | ||
| + | |||
| + | |||
| + | <math>\left( x^{\text{2}}-\text{2 } \right)\ln 2=0</math>  | ||
| + | |||
| + | |||
| + | This means that   | ||
| + | <math>x</math>  | ||
| + | must satisfy the second-degree equation  | ||
| + | |||
| + | |||
| + | <math>\left( x^{\text{2}}-\text{2 } \right)=0</math>  | ||
| + | |||
| + | |||
| + | Taking the root gives    | ||
| + | <math>x=-\sqrt{2}</math>  | ||
| + | or    | ||
| + | <math>x=\sqrt{2}.</math>  | ||
| + | |||
| + | |||
| + | NOTE: the exercise is taken from a Finnish upper-secondary final examination from March 2007.  | ||
Revision as of 10:11, 26 September 2008
The left-hand side is " \displaystyle \text{2} raised to something", and therefore a positive number regardless of whatever value the exponent has. We can therefore take the log of both sides,
\displaystyle \ln 2^{x^{2}-2}=\ln 1
and use the log law \displaystyle \lg a^{b}=b\centerdot \lg a to get the exponent \displaystyle x^{\text{2}}-\text{2 } as a factor on the left-hand side
\displaystyle \left( x^{\text{2}}-\text{2 } \right)\ln 2=\ln 1
Because 
\displaystyle e^{0}=1, so 
\displaystyle \text{ln 1}=0, giving:
\displaystyle \left( x^{\text{2}}-\text{2 } \right)\ln 2=0
This means that 
\displaystyle x
must satisfy the second-degree equation
\displaystyle \left( x^{\text{2}}-\text{2 } \right)=0
Taking the root gives  
\displaystyle x=-\sqrt{2}
or  
\displaystyle x=\sqrt{2}.
NOTE: the exercise is taken from a Finnish upper-secondary final examination from March 2007.
