Solution 3.3:6a
From Förberedande kurs i matematik 1
m  (Lösning 3.3:6a moved to Solution 3.3:6a: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {  | + | The calculator does not have button for   | 
| - | <  | + | <math>\log _{3}</math>, but it does have one for the natural logarithm ln, so we need to rewrite   | 
| - | {{  | + | <math>\log _{3}4</math>  | 
| - | {{  | + | in terms of ln.  | 
| - | <  | + | |
| - | {{  | + | If we go back to the definition of the logarithm, we see that   | 
| - | [[  | + | <math>\log _{3}4</math>  | 
| + | is that number which satisfies   | ||
| + | |||
| + | |||
| + | <math>3^{\log _{3}4}=4</math>  | ||
| + | |||
| + | |||
| + | Now, take the natural logarithm of both sides,  | ||
| + | |||
| + | |||
| + | <math>\ln 3^{\log _{3}4}=\ln 4</math>  | ||
| + | |||
| + | |||
| + | Using the logarithm law,   | ||
| + | <math>\lg a^{b}=b\lg a</math>, the left-hand side can be written as    | ||
| + | <math>\log _{3}4\centerdot \ln 3</math>  | ||
| + | and the relation is  | ||
| + | |||
| + | |||
| + | <math>\log _{3}4\centerdot \ln 3=\ln 4</math>  | ||
| + | |||
| + | |||
| + | Thus, after dividing by   | ||
| + | <math>\text{ln 3}</math>, we have  | ||
| + | |||
| + | |||
| + | <math>\log _{3}4=\frac{\ln 4}{\ln 3}=\frac{1.386294...}{1.098612...}=1.2618595</math>  | ||
| + | |||
| + | |||
| + | which gives 1.262 as the rounded-off answer.  | ||
| + | |||
| + | NOTE: on a calculator, the answer is obtained by pressing the buttons  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \left[ 4 \right]\quad \left[ \text{LN} \right]\quad \left[ \div  \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\   | ||
| + | & \quad \left[ 4 \right]\quad \left[ \text{LN} \right]\quad \left[ \div  \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\   | ||
| + | \end{align}</math>  | ||
Revision as of 09:08, 26 September 2008
The calculator does not have button for \displaystyle \log _{3}, but it does have one for the natural logarithm ln, so we need to rewrite \displaystyle \log _{3}4 in terms of ln.
If we go back to the definition of the logarithm, we see that \displaystyle \log _{3}4 is that number which satisfies
\displaystyle 3^{\log _{3}4}=4
Now, take the natural logarithm of both sides,
\displaystyle \ln 3^{\log _{3}4}=\ln 4
Using the logarithm law, 
\displaystyle \lg a^{b}=b\lg a, the left-hand side can be written as  
\displaystyle \log _{3}4\centerdot \ln 3
and the relation is
\displaystyle \log _{3}4\centerdot \ln 3=\ln 4
Thus, after dividing by 
\displaystyle \text{ln 3}, we have
\displaystyle \log _{3}4=\frac{\ln 4}{\ln 3}=\frac{1.386294...}{1.098612...}=1.2618595
which gives 1.262 as the rounded-off answer.
NOTE: on a calculator, the answer is obtained by pressing the buttons
\displaystyle \begin{align}
& \left[ 4 \right]\quad \left[ \text{LN} \right]\quad \left[ \div  \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\ 
& \quad \left[ 4 \right]\quad \left[ \text{LN} \right]\quad \left[ \div  \right]\quad \left[ 3 \right]\quad \left[ \text{LN} \right]\quad \left[ = \right] \\ 
\end{align}
