Solution 3.3:2g
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.3:2g moved to Solution 3.3:2g: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {  | + | We know that   | 
| - | <  | + | <math>10^{\lg x}=x</math>, so therefore we rewrite the exponent as   | 
| - | {{  | + | <math>-\lg 0.1=\left( -1 \right)\centerdot \lg 0.1=\lg 0.1^{-1}</math>  | 
| + | by using the log law   | ||
| + | <math>b\lg a=\lg a^{b}</math>. This gives  | ||
| + | |||
| + | |||
| + | <math>10^{-\lg 0.1}=10^{\lg 0.1^{-1}}=0.1^{-1}=\frac{1}{0.1}=10</math>  | ||
Revision as of 13:31, 25 September 2008
We know that \displaystyle 10^{\lg x}=x, so therefore we rewrite the exponent as \displaystyle -\lg 0.1=\left( -1 \right)\centerdot \lg 0.1=\lg 0.1^{-1} by using the log law \displaystyle b\lg a=\lg a^{b}. This gives
\displaystyle 10^{-\lg 0.1}=10^{\lg 0.1^{-1}}=0.1^{-1}=\frac{1}{0.1}=10
