Solution 3.2:5
From Förberedande kurs i matematik 1
m  (Lösning 3.2:5 moved to Solution 3.2:5: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | After squaring both sides, we obtain the equation  | 
| - | <  | + | |
| - | {{  | + | |
| - | {{  | + | <math>3x-2=\left( 2-x \right)^{2}\quad \quad (*)</math>  | 
| - | <  | + | |
| - | {{  | + | |
| + | and if we expand the right-hand side and then collect gather the terms, we get  | ||
| + | |||
| + | |||
| + | <math>x^{2}-7x+6=0</math>  | ||
| + | |||
| + | |||
| + | Completing the square of the left-hand side, we obtain  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & x^{2}-7x+6=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+6 \\   | ||
| + | & =\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{24}{4} \\   | ||
| + | & =\left( x-\frac{7}{2} \right)^{2}-\frac{25}{4} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | which means that the equation can be written as  | ||
| + | |||
| + | |||
| + | <math>\left( x-\frac{7}{2} \right)^{2}=\frac{25}{4}</math>  | ||
| + | |||
| + | |||
| + | and the solutions are therefore  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & x=\frac{7}{2}+\sqrt{\frac{25}{4}=}\frac{7}{2}+\frac{5}{2}=\frac{12}{2}=6 \\   | ||
| + | & x=\frac{7}{2}-\sqrt{\frac{25}{4}=}\frac{7}{2}-\frac{5}{2}=\frac{2}{2}=1 \\   | ||
| + | \end{align}</math>  | ||
| + | EQ6  | ||
| + | |||
| + | Substituting   | ||
| + | <math>x=\text{1 }</math>  | ||
| + | and   | ||
| + | <math>x=\text{6 }</math>  | ||
| + | into the quadratic equation (*) shows that we have solved the equation correctly.  | ||
| + | |||
| + | |||
| + | <math>x=\text{1 }</math>:  LHS  | ||
| + | <math>=3\centerdot 1-2=1</math>  | ||
| + | and 	RHS  | ||
| + | <math>=\left( 2-1 \right)^{2}=1</math>  | ||
| + | |||
| + | |||
| + | <math>x=\text{6 }</math>:  LHS   | ||
| + | <math>=3\centerdot 6-2=16</math>  | ||
| + | and	RHS   | ||
| + | <math>=\left( 2-6 \right)^{2}=16</math>  | ||
| + | |||
| + | |||
| + | Finally, we need to sort away possible false roots to the root equation by verifying the solutions.  | ||
| + | |||
| + | |||
| + | <math>x=\text{1 }</math>:  LHS  | ||
| + | <math>=\sqrt{3\centerdot 1-2}=1</math>  | ||
| + | and 	RHS   | ||
| + | <math>=2-1=1</math>  | ||
| + | |||
| + | |||
| + | <math>x=\text{6 }</math>:  LHS  | ||
| + | <math>=\sqrt{3\centerdot 6-2}=4</math>  | ||
| + | 	and	RHS =   | ||
| + | <math>=2-6=-4</math>  | ||
| + | |||
| + | This shows that the root equation has the solution  | ||
| + | <math>x=\text{1}</math>.  | ||
Revision as of 10:54, 25 September 2008
After squaring both sides, we obtain the equation
\displaystyle 3x-2=\left( 2-x \right)^{2}\quad \quad (*)
and if we expand the right-hand side and then collect gather the terms, we get
\displaystyle x^{2}-7x+6=0
Completing the square of the left-hand side, we obtain
\displaystyle \begin{align}
& x^{2}-7x+6=\left( x-\frac{7}{2} \right)^{2}-\left( \frac{7}{2} \right)^{2}+6 \\ 
& =\left( x-\frac{7}{2} \right)^{2}-\frac{49}{4}+\frac{24}{4} \\ 
& =\left( x-\frac{7}{2} \right)^{2}-\frac{25}{4} \\ 
\end{align}
which means that the equation can be written as
\displaystyle \left( x-\frac{7}{2} \right)^{2}=\frac{25}{4}
and the solutions are therefore
\displaystyle \begin{align}
& x=\frac{7}{2}+\sqrt{\frac{25}{4}=}\frac{7}{2}+\frac{5}{2}=\frac{12}{2}=6 \\ 
& x=\frac{7}{2}-\sqrt{\frac{25}{4}=}\frac{7}{2}-\frac{5}{2}=\frac{2}{2}=1 \\ 
\end{align}
EQ6
Substituting \displaystyle x=\text{1 } and \displaystyle x=\text{6 } into the quadratic equation (*) shows that we have solved the equation correctly.
\displaystyle x=\text{1 }:  LHS
\displaystyle =3\centerdot 1-2=1
and 	RHS
\displaystyle =\left( 2-1 \right)^{2}=1
\displaystyle x=\text{6 }:  LHS 
\displaystyle =3\centerdot 6-2=16
and	RHS 
\displaystyle =\left( 2-6 \right)^{2}=16
Finally, we need to sort away possible false roots to the root equation by verifying the solutions.
\displaystyle x=\text{1 }:  LHS
\displaystyle =\sqrt{3\centerdot 1-2}=1
and 	RHS 
\displaystyle =2-1=1
\displaystyle x=\text{6 }:  LHS
\displaystyle =\sqrt{3\centerdot 6-2}=4
	and	RHS = 
\displaystyle =2-6=-4
This shows that the root equation has the solution \displaystyle x=\text{1}.
