Solution 3.1:6c
From Förberedande kurs i matematik 1
m  (Lösning 3.1:6c moved to Solution 3.1:6c: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | The expression is so complicated that we first need to simplify it. We start with the three fractions,   | 
| - | <  | + | <math>\frac{1}{\sqrt{3}},\quad \frac{1}{\sqrt{5}}</math>  | 
| - | {{  | + | and   | 
| - | {{  | + | <math>\frac{1}{\sqrt{2}}</math>, which contain root signs and multiply their numerators and denominators in such a way that the root signs end up only in the numerators:  | 
| - | <  | + | |
| - | {{  | + | |
| + | <math>\frac{\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}}{\frac{1}{\sqrt{2}}-\frac{1}{2}}=\frac{\frac{1}{\sqrt{3}}\centerdot \frac{\sqrt{3}}{\sqrt{3}}-\frac{1}{\sqrt{5}}\centerdot \frac{\sqrt{5}}{\sqrt{5}}}{\frac{1}{\sqrt{2}}\centerdot \frac{\sqrt{2}}{\sqrt{2}}-\frac{1}{2}}=\frac{\frac{\sqrt{3}}{3}-\frac{\sqrt{5}}{5}}{\frac{\sqrt{2}}{2}-\frac{1}{2}}</math>  | ||
| + | |||
| + | |||
| + | Then, multiply the top and bottom  of the fraction by   | ||
| + | <math>\text{2}</math>  | ||
| + | so that we get rid of the fractions in the denominator:  | ||
| + | |||
| + | |||
| + | <math>\frac{\left( \frac{\sqrt{3}}{3}-\frac{\sqrt{5}}{5} \right)\centerdot 2}{\left( \frac{\sqrt{2}}{2}-\frac{1}{2} \right)\centerdot 2}=\frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\frac{2\sqrt{2}}{2}-\frac{2}{2}}=\frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\sqrt{2}-1}</math>  | ||
| + | |||
| + | |||
| + | Now, we can multiply the top and bottom by the conjugate of the denominator   | ||
| + | <math>\sqrt{2}+1</math>, to get an expression without roots in the denominator.  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & \frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\sqrt{2}-1}=\frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\sqrt{2}-1}\centerdot \frac{\sqrt{2}+1}{\sqrt{2}+1}=\frac{\left( \frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5} \right)\left( \sqrt{2}+1 \right)}{\left( \sqrt{2} \right)^{2}-1^{2}} \\   | ||
| + | & =\frac{\frac{2\sqrt{3}\sqrt{2}}{3}+\frac{2\sqrt{3}\centerdot 1}{3}-\frac{2\sqrt{5}\sqrt{2}}{5}-\frac{2\sqrt{5}\centerdot 1}{5}}{2-1}=\frac{\frac{2}{3}\sqrt{3\centerdot 2}+\frac{2}{3}\sqrt{3}-\frac{2}{5}\sqrt{10}-\frac{2}{5}\sqrt{5}}{1} \\   | ||
| + | & =\frac{2}{3}\sqrt{6}+\frac{2}{3}\sqrt{3}-\frac{2}{5}\sqrt{10}-\frac{2}{5}\sqrt{5} \\   | ||
| + | \end{align}</math>  | ||
Revision as of 09:24, 23 September 2008
The expression is so complicated that we first need to simplify it. We start with the three fractions, \displaystyle \frac{1}{\sqrt{3}},\quad \frac{1}{\sqrt{5}} and \displaystyle \frac{1}{\sqrt{2}}, which contain root signs and multiply their numerators and denominators in such a way that the root signs end up only in the numerators:
\displaystyle \frac{\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}}{\frac{1}{\sqrt{2}}-\frac{1}{2}}=\frac{\frac{1}{\sqrt{3}}\centerdot \frac{\sqrt{3}}{\sqrt{3}}-\frac{1}{\sqrt{5}}\centerdot \frac{\sqrt{5}}{\sqrt{5}}}{\frac{1}{\sqrt{2}}\centerdot \frac{\sqrt{2}}{\sqrt{2}}-\frac{1}{2}}=\frac{\frac{\sqrt{3}}{3}-\frac{\sqrt{5}}{5}}{\frac{\sqrt{2}}{2}-\frac{1}{2}}
Then, multiply the top and bottom  of the fraction by 
\displaystyle \text{2}
so that we get rid of the fractions in the denominator:
\displaystyle \frac{\left( \frac{\sqrt{3}}{3}-\frac{\sqrt{5}}{5} \right)\centerdot 2}{\left( \frac{\sqrt{2}}{2}-\frac{1}{2} \right)\centerdot 2}=\frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\frac{2\sqrt{2}}{2}-\frac{2}{2}}=\frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\sqrt{2}-1}
Now, we can multiply the top and bottom by the conjugate of the denominator 
\displaystyle \sqrt{2}+1, to get an expression without roots in the denominator.
\displaystyle \begin{align}
& \frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\sqrt{2}-1}=\frac{\frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5}}{\sqrt{2}-1}\centerdot \frac{\sqrt{2}+1}{\sqrt{2}+1}=\frac{\left( \frac{2\sqrt{3}}{3}-\frac{2\sqrt{5}}{5} \right)\left( \sqrt{2}+1 \right)}{\left( \sqrt{2} \right)^{2}-1^{2}} \\ 
& =\frac{\frac{2\sqrt{3}\sqrt{2}}{3}+\frac{2\sqrt{3}\centerdot 1}{3}-\frac{2\sqrt{5}\sqrt{2}}{5}-\frac{2\sqrt{5}\centerdot 1}{5}}{2-1}=\frac{\frac{2}{3}\sqrt{3\centerdot 2}+\frac{2}{3}\sqrt{3}-\frac{2}{5}\sqrt{10}-\frac{2}{5}\sqrt{5}}{1} \\ 
& =\frac{2}{3}\sqrt{6}+\frac{2}{3}\sqrt{3}-\frac{2}{5}\sqrt{10}-\frac{2}{5}\sqrt{5} \\ 
\end{align}
