Solution 2.3:10a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 2.3:10a moved to Solution 2.3:10a: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | Individually, the inequalities   | 
| - | <  | + | <math>y\ge x^{\text{2 }}</math>  | 
| - | {{  | + | and   | 
| + | <math>y\le \text{1 }</math>  | ||
| + | define the region above the parabola   | ||
| + | <math>y=x^{\text{2}}\text{ }</math>  | ||
| + | and under the line   | ||
| + | <math>y=\text{1}</math>, respectively.   | ||
| + | |||
[[Image:2_3_10_a.gif|center]]  | [[Image:2_3_10_a.gif|center]]  | ||
| + | Those points which satisfy both inequalities lie in the region above the parabola, but below the line  | ||
| + | <math>y=\text{1}</math>  | ||
| + | |||
[[Image:2_3_10_a2.gif|center]]  | [[Image:2_3_10_a2.gif|center]]  | ||
Revision as of 12:19, 21 September 2008
Individually, the inequalities \displaystyle y\ge x^{\text{2 }} and \displaystyle y\le \text{1 } define the region above the parabola \displaystyle y=x^{\text{2}}\text{ } and under the line \displaystyle y=\text{1}, respectively.
Those points which satisfy both inequalities lie in the region above the parabola, but below the line \displaystyle y=\text{1}


