Solution 1.3:6e
From Förberedande kurs i matematik 1
m  (Lösning 1.3:6e moved to Solution 1.3:6e: Robot: moved page)  | 
				|||
| Line 1: | Line 1: | ||
| - | {{  | + | Both   | 
| - | <  | + | <math>125</math>  | 
| - | {{  | + | and   | 
| + | <math>625</math>  | ||
| + | can be written as powers of   | ||
| + | <math>5</math>,  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & 125=5\centerdot 5=5\centerdot 5\centerdot 5=5^{3} \\   | ||
| + | &  \\   | ||
| + | & 625=5\centerdot 125=5\centerdot 5^{3}=5^{4} \\   | ||
| + | &  \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | and this means that  | ||
| + | |||
| + | |||
| + | <math>\begin{align}  | ||
| + | & 125^{\frac{1}{2}}=\left( 5^{3} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{1}{2}}=5^{\frac{3}{2}} \\   | ||
| + | &  \\   | ||
| + | & 625=\left( 5^{4} \right)^{\frac{1}{3}}=5^{4\centerdot \frac{1}{3}}=5^{\frac{4}{3}} \\   | ||
| + | \end{align}</math>  | ||
| + | |||
| + | |||
| + | From this, we see that   | ||
| + | <math>125^{\frac{1}{2}}>625^{\frac{1}{3}}</math>, since the exponent   | ||
| + | <math>{3}/{2}\;</math>  | ||
| + | is bigger than   | ||
| + | <math>{4}/{3}\;</math>  | ||
| + | and the base   | ||
| + | <math>5</math>  | ||
| + | is bigger than   | ||
| + | <math>1</math>.  | ||
Revision as of 12:59, 15 September 2008
Both \displaystyle 125 and \displaystyle 625 can be written as powers of \displaystyle 5,
\displaystyle \begin{align}
& 125=5\centerdot 5=5\centerdot 5\centerdot 5=5^{3} \\ 
&  \\ 
& 625=5\centerdot 125=5\centerdot 5^{3}=5^{4} \\ 
&  \\ 
\end{align}
and this means that
\displaystyle \begin{align}
& 125^{\frac{1}{2}}=\left( 5^{3} \right)^{\frac{1}{2}}=5^{3\centerdot \frac{1}{2}}=5^{\frac{3}{2}} \\ 
&  \\ 
& 625=\left( 5^{4} \right)^{\frac{1}{3}}=5^{4\centerdot \frac{1}{3}}=5^{\frac{4}{3}} \\ 
\end{align}
From this, we see that 
\displaystyle 125^{\frac{1}{2}}>625^{\frac{1}{3}}, since the exponent 
\displaystyle {3}/{2}\;
is bigger than 
\displaystyle {4}/{3}\;
and the base 
\displaystyle 5
is bigger than 
\displaystyle 1.
