Solution 4.3:4b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
If we once again use the Pythagorean identity we get  | If we once again use the Pythagorean identity we get  | ||
| + | {{Displayed math||<math>\cos^2 v + \sin^2 v = 1\qquad\Leftrightarrow\qquad \sin v = \pm\sqrt{1-\cos^2 v}\,\textrm{.}</math>}}  | ||
| - | <math>\  | + | Because the angle ''v'' lies between <math>0</math> and <math>\pi</math>, <math>\sin v</math> is positive (an angle in the first and second quadrants has a positive ''y''-coordinate) and therefore  | 
| - | + | {{Displayed math||<math>\sin v = +\sqrt{1-\cos^2 v} = \sqrt{1-b^2}\,\textrm{.}</math>}}  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>\sin v=+\sqrt{1-\cos ^  | + | |
Current revision
If we once again use the Pythagorean identity we get
| \displaystyle \cos^2 v + \sin^2 v = 1\qquad\Leftrightarrow\qquad \sin v = \pm\sqrt{1-\cos^2 v}\,\textrm{.} | 
Because the angle v lies between \displaystyle 0 and \displaystyle \pi, \displaystyle \sin v is positive (an angle in the first and second quadrants has a positive y-coordinate) and therefore
| \displaystyle \sin v = +\sqrt{1-\cos^2 v} = \sqrt{1-b^2}\,\textrm{.} | 
