Solution 4.1:3c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | In this right-angled triangle, the side of length   | + | In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives  | 
| - | + | ||
| - | is the hypotenuse (it is the side which   | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>17^2 = 8^2 + x^2</math>}}  | ||
or  | or  | ||
| - | + | {{Displayed math||<math>x^2 = 17^2 - 8^2\,\textrm{.}</math>}}  | |
| - | <math>x^  | + | |
| - | + | ||
We get  | We get  | ||
| - | + | {{Displayed math||<math>\begin{align}  | |
| - | <math>\begin{align}  | + | x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt]   | 
| - | &   | + | &= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.}  | 
| - | & =\sqrt{9\  | + | \end{align}</math>}}  | 
| - | \end{align}</math>  | + | |
Current revision
In this right-angled triangle, the side of length 17 is the hypotenuse (it is the side which is opposite the right angle). The Pythagorean theorem then gives
| \displaystyle 17^2 = 8^2 + x^2 | 
or
| \displaystyle x^2 = 17^2 - 8^2\,\textrm{.} | 
We get
| \displaystyle \begin{align}
 x &= \sqrt{17^2-8^2} = \sqrt{289-64} = \sqrt{225}\\[5pt] &= \sqrt{9\cdot 25} = \sqrt{3^2\cdot 5^2} = 3\cdot 5 = 15\,\textrm{.} \end{align}  | 
