Solution 2.1:6b
From Förberedande kurs i matematik 1
 (Ny sida: {{NAVCONTENT_START}} <center> Bild:2_1_6b.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | The lowest common denominator for the three terms is <math>(x-2)(x+3)</math> and we expand each term so that all terms have the same denominator  | 
| - | + | ||
| - | {{  | + | {{Displayed math||<math>\begin{align}  | 
| + | \frac{x}{x-2}+\frac{x}{x+3}-2  | ||
| + | &= \frac{x}{x-2}\cdot\frac{x+3}{x+3} + \frac{x}{x+3}\cdot\frac{x-2}{x-2} - 2\cdot\frac{(x-2)(x+3)}{(x-2)(x+3)}\\[5pt]   | ||
| + | &= \frac{x(x+3)+x(x-2)-2(x-2)(x+3)}{(x-2)(x+3)}\\[5pt]   | ||
| + | &= \frac{x^{2}+3x+x^{2}-2x-2(x^{2}+3x-2x-6)}{(x-2)(x+3)}\\[5pt]   | ||
| + | &= \frac{x^{2}+3x+x^{2}-2x-2x^{2}-6x+4x+12}{(x-2)(x+3)}\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | Now, collect the terms in the numerator  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \frac{x}{x-2}+\frac{x}{x+3}-2 &= \frac{(x^{2}+x^{2}-2x^{2})+(3x-2x-6x+4x)+12}{(x-2)(x+3)}\\[5pt]   | ||
| + | &= \frac{-x+12}{(x-2)(x+3)}\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | Note: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.  | ||
Current revision
The lowest common denominator for the three terms is \displaystyle (x-2)(x+3) and we expand each term so that all terms have the same denominator
| \displaystyle \begin{align}
 \frac{x}{x-2}+\frac{x}{x+3}-2 &= \frac{x}{x-2}\cdot\frac{x+3}{x+3} + \frac{x}{x+3}\cdot\frac{x-2}{x-2} - 2\cdot\frac{(x-2)(x+3)}{(x-2)(x+3)}\\[5pt] &= \frac{x(x+3)+x(x-2)-2(x-2)(x+3)}{(x-2)(x+3)}\\[5pt] &= \frac{x^{2}+3x+x^{2}-2x-2(x^{2}+3x-2x-6)}{(x-2)(x+3)}\\[5pt] &= \frac{x^{2}+3x+x^{2}-2x-2x^{2}-6x+4x+12}{(x-2)(x+3)}\,\textrm{.} \end{align}  | 
Now, collect the terms in the numerator
| \displaystyle \begin{align}
 \frac{x}{x-2}+\frac{x}{x+3}-2 &= \frac{(x^{2}+x^{2}-2x^{2})+(3x-2x-6x+4x)+12}{(x-2)(x+3)}\\[5pt] &= \frac{-x+12}{(x-2)(x+3)}\,\textrm{.} \end{align}  | 
Note: By keeping the denominator factorized during the entire calculation, we can see at the end that the answer cannot be simplified any further.
