Solution 4.1:1
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | The only thing we really need to remember is that one   | + | The only thing we really need to remember is that one revolution corresponds to   | 
| - | + | 360° or <math>2\pi</math> radians. Then we get:  | |
| - | or   | + | |
| - | <math>  | + | |
| - | radians. Then we get:  | + | |
| - | a)   | + | {|  | 
| - | <math>\frac{1}{4}  | + | ||a)    | 
| - | + | |width="100%"|<math>\frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ}</math> and  | |
| - | + | |-  | |
| - | and  | + | ||  | 
| - | + | |width="100%"|<math>\frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 2\pi\ \text{radians} = \frac{\pi}{2}\ \text{radians,}</math>  | |
| - | <math>\frac{1}{4}  | + | |-  | 
| - | + | |height="10px"|   | |
| - | + | |-  | |
| - | radians   | + | ||b)    | 
| - | + | |width="100%"|<math>\frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ}</math> and  | |
| - | + | |-  | |
| - | + | ||  | |
| - | + | ||<math>\frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 2\pi\ \text{radians} = \frac{3\pi}{4}\ \text{radians,}</math>  | |
| - | b)   | + | |-  | 
| - | <math>\frac{3}{8}  | + | |height="10px"|   | 
| - | + | |-  | |
| - | + | ||c)    | |
| - | and  | + | |width="100%"|<math>-\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ}</math> and  | 
| - | + | |-  | |
| - | <math>\frac{3}{8}  | + | ||  | 
| - | + | |width="100%"|<math>-\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 2\pi\ \text{radians} = -\frac{4\pi}{3}\ \text{radians,}</math>  | |
| - | + | |-  | |
| - | radians   | + | |height="10px"|   | 
| - | + | |-  | |
| - | + | ||d)   	  | |
| - | + | |width="100%"|<math>\frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ}</math> and  | |
| - | + | |-  | |
| - | + | ||  | |
| - | c)   | + | |width="100%"|<math>\frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 2\pi\ \text{radians} = \frac{97\pi}{6}\ \text{radians.}</math>  | 
| - | <math>-\frac{2}{3}  | + | |}  | 
| - | + | ||
| - | + | ||
| - | and  | + | |
| - | + | ||
| - | <math>-\frac{2}{3}  | + | |
| - | + | ||
| - | + | ||
| - | radians   | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | d)   | + | |
| - | <math>\frac{97}{12}  | + | |
| - | + | ||
| - | + | ||
| - | and  | + | |
| - | + | ||
| - | <math>\frac{97}{12}  | + | |
| - | + | ||
| - | + | ||
| - | radians   | + | |
| - | + | ||
| - | + | ||
Current revision
The only thing we really need to remember is that one revolution corresponds to 360° or \displaystyle 2\pi radians. Then we get:
| a) | \displaystyle \frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 360^{\circ} = 90^{\circ} and | 
| \displaystyle \frac{1}{4}\ \text{revolution} = \frac{1}{4}\cdot 2\pi\ \text{radians} = \frac{\pi}{2}\ \text{radians,} | |
| b) | \displaystyle \frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 360^{\circ} = 135^{\circ} and | 
| \displaystyle \frac{3}{8}\ \text{revolution} = \frac{3}{8}\cdot 2\pi\ \text{radians} = \frac{3\pi}{4}\ \text{radians,} | |
| c) | \displaystyle -\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 360^{\circ} = -240^{\circ} and | 
| \displaystyle -\frac{2}{3}\ \text{revolution} = -\frac{2}{3}\cdot 2\pi\ \text{radians} = -\frac{4\pi}{3}\ \text{radians,} | |
| d) | \displaystyle \frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 360^{\circ} = 2910^{\circ} and | 
| \displaystyle \frac{97}{12}\ \text{revolution} = \frac{97}{12}\cdot 2\pi\ \text{radians} = \frac{97\pi}{6}\ \text{radians.} | 
