Solution 3.3:5e
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
The argument of ln can be written as  | The argument of ln can be written as  | ||
| + | {{Displayed math||<math>\frac{1}{e^{2}} = e^{-2}</math>}}  | ||
| - | <math>\  | + | and with the logarithm law, <math>\ln a^{b} = b\ln a</math>, we obtain  | 
| - | + | {{Displayed math||<math>\ln \frac{1}{e^{2}} = \ln e^{-2} = (-2)\cdot\ln e = (-2)\cdot 1 = -2\,\textrm{.}</math>}}  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>\ln \frac{1}{e^{2}}=\ln e^{-2}=  | + | |
Current revision
The argument of ln can be written as
| \displaystyle \frac{1}{e^{2}} = e^{-2} | 
and with the logarithm law, \displaystyle \ln a^{b} = b\ln a, we obtain
| \displaystyle \ln \frac{1}{e^{2}} = \ln e^{-2} = (-2)\cdot\ln e = (-2)\cdot 1 = -2\,\textrm{.} | 
