Solution 3.3:2g
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | We know that   | + | We know that <math>10^{\lg x} = x</math>, so therefore we rewrite the exponent as   | 
| - | <math>10^{\lg x}=x</math>, so therefore we rewrite the exponent as   | + | <math>-\lg 0\textrm{.}1 = (-1)\cdot\lg 0\textrm{.}1 = \lg 0\textrm{.}1^{-1}</math>  | 
| - | <math>-\lg 0.1=  | + | by using the log law <math>b\lg a = \lg a^b</math>. This gives  | 
| - | by using the log law   | + | |
| - | <math>b\lg a=\lg a^  | + | |
| - | + | {{Displayed math||<math>10^{-\lg 0\textrm{.}1}=10^{\lg 0\textrm{.}1^{-1}}=0\textrm{.}1^{-1}=\frac{1}{0\textrm{.}1}=10\,\textrm{.}</math>}}  | |
| - | <math>10^{-\lg 0.1}=10^{\lg 0.1^{-1}}=0.1^{-1}=\frac{1}{0.1}=10</math>  | + | |
Current revision
We know that \displaystyle 10^{\lg x} = x, so therefore we rewrite the exponent as \displaystyle -\lg 0\textrm{.}1 = (-1)\cdot\lg 0\textrm{.}1 = \lg 0\textrm{.}1^{-1} by using the log law \displaystyle b\lg a = \lg a^b. This gives
| \displaystyle 10^{-\lg 0\textrm{.}1}=10^{\lg 0\textrm{.}1^{-1}}=0\textrm{.}1^{-1}=\frac{1}{0\textrm{.}1}=10\,\textrm{.} | 
