Solution 2.1:6c
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
| - | Because the   | + | Because the denominators are <math>a^{2}-ab = a(a-b)</math> and <math>a-b</math>, both terms will have a common denominator <math>a(a-b)</math> if the top and bottom of the second term are multiplied by <math>a</math>,  | 
| - | <math>a^{2}-ab=a  | + | |
| - | and   | + | |
| - | <math>a-b</math>, both terms will have a common denominator   | + | |
| - | <math>a  | + | |
| - | if the top and bottom of the second term are multiplied by   | + | |
| - | <math>a</math>  | + | |
| - | + | {{Displayed math||<math>\begin{align}  | |
| - | <math>\begin{align}  | + | \frac{2a+b}{a^{2}-b}-\frac{2}{a-b} &= \frac{2a+b}{a(a-b)}-\frac{2}{a-b}\cdot\frac{a}{a}\\[5pt]   | 
| - | + | &= \frac{2a+b-2a}{a(a-b)}\\[5pt]  | |
| - | & =\frac{2a+b-2a}{a  | + | &= \frac{b}{a(a-b)}\,\textrm{.}  | 
| - | \end{align}</math>  | + | \end{align}</math>}}  | 
Current revision
Because the denominators are \displaystyle a^{2}-ab = a(a-b) and \displaystyle a-b, both terms will have a common denominator \displaystyle a(a-b) if the top and bottom of the second term are multiplied by \displaystyle a,
| \displaystyle \begin{align}
 \frac{2a+b}{a^{2}-b}-\frac{2}{a-b} &= \frac{2a+b}{a(a-b)}-\frac{2}{a-b}\cdot\frac{a}{a}\\[5pt] &= \frac{2a+b-2a}{a(a-b)}\\[5pt] &= \frac{b}{a(a-b)}\,\textrm{.} \end{align}  | 
