3.3 Logarithms

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
Current revision (16:48, 2 January 2009) (edit) (undo)
m
 
(27 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Mall:Vald flik|[[3.3 Logaritmer|Teori]]}}
+
{{Selected tab|[[3.3 Logarithms|Theory]]}}
-
{{Mall:Ej vald flik|[[3.3 Övningar|Övningar]]}}
+
{{Not selected tab|[[3.3 Exercises|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
{{Info|
{{Info|
-
'''Innehåll:'''
+
'''Contents:'''
-
*Logaritmer
+
* Logarithms
-
*Logaritmlagar
+
* Fundamental Laws of Logarithms
}}
}}
{{Info|
{{Info|
-
'''Lärandemål:'''
+
'''Learning outcomes:'''
-
Efter detta avsnitt ska du ha lärt dig att:
+
After this section, you will have learned:
-
*Känna till begreppen bas och exponent.
+
*The concepts of base and exponent.
-
*Känna till beteckningarna <math>\ln</math>, <math>\lg</math>, <math>\log</math> och <math>\log_{a}</math>.
+
*The meaning of the notation <math>\ln</math>, <math>\lg</math>, <math>\log</math> and <math>\log_{a}</math>.
-
*Beräkna enkla logaritmuttryck med hjälp av logaritmens definition.
+
*To calculate simple logarithmic expressions using the definition of a logarithm.
-
*Logaritmen är bara definierad för positiva tal.
+
*That logarithms are only defined for positive numbers.
-
*Känna till talet <math>e</math>.
+
* The value of the number <math>e</math>.
-
*Hantera logaritmlagarna i förenkling av logaritmuttryck.
+
* To use the laws of logarithms to simplify logarithmic expressions.
-
*Veta när logaritmlagarna är giltiga.
+
* To know when the laws of logarithms are valid.
-
*Uttrycka en logaritm i termer av en logaritm med en annan bas.
+
* To express a logarithm in terms of a logarithm with a different base.
-
*Lösa ekvationer som innehåller exponentialuttryck och som med logaritmering leder till förstagradsekvationer.
+
-
*Avgöra vilket av två logaritmuttryck som är störst baserat på jämförelse av bas/argument.
+
}}
}}
-
== Logaritmer med basen 10 ==
+
==Logarithms to the base 10 ==
-
Man använder gärna potenser med basen <math>10</math> för att skriva stora och små tal, t.ex.
+
We often use powers with base <math>10</math> to represent large and small numbers, for example
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
-
10^3 &= 10 \cdot 10 \cdot 10 = 1000\,,\\
+
10^3 &= 10 \times 10 \times 10 = 1000\,,\\
-
10^{-2} &= \frac{1}{10 \cdot 10} = \frac{1}{100} = 0{,}01\,\mbox{.}
+
10^{-2} &= \frac{1}{10 \times 10} = \frac{1}{100} = 0\textrm{.}01\,\mbox{.}
\end{align*}</math>}}
\end{align*}</math>}}
-
Om man enbart betraktar exponenten skulle man i stället kunna säga att
+
Informally, we might say that that
-
:::"exponenten för 1000 är 3", eller
+
:::"the exponent of 1000 is 3",
-
:::"exponenten för 0,01 är -2".
+
-
Precis så är ''logaritmer'' definierade. Man uttrycker sig på följande sätt:
+
or
 +
 
 +
:::"the exponent of 0.01 is -2".
 +
 
 +
In fact, though, the term ''logarithm'' is used instead , and we say:
-
:::"''logaritmen'' för 1000 är 3", vilket skrivs <math>\lg 1000 = 3</math>,
+
:::"''The logarithm'' of 1000 is 3",
-
:::"''logaritmen'' för 0,01 är -2", vilket skrivs <math>\lg 0{,}01 = -2</math>.
+
 
 +
which is written as <math>\lg 1000 = 3</math>, and
 +
 
 +
:::"''The logarithm'' of 0.01 is -2",
 +
 
 +
which is written as <math>\lg 0\textrm{.}01 = -2</math>.
 +
 
 +
More generally, we say:
-
Mer allmänt kan man uttrycka sig:
+
:::The logarithm of a number <math>y</math> is denoted by <math>\lg y</math> and is the real number <math> x </math> in the blue box which satisfies the equality
-
:::Logaritmen av ett tal <math>y</math> betecknas med <math>\lg y</math> och är den exponent som ska stå i den blåa rutan i likheten
+
{{Displayed math||<math>10^{\ \bbox[#AAEEFF,2pt]{\,x\,}} = y\,\mbox{.} </math>}}
-
{{Fristående formel||<math>10^{\ \bbox[#AAEEFF,2pt]{\,\phantom{a}\,}} = y\,\mbox{.} </math>}}
+
One way to think about this is that the logarithm of <math>y</math> is the answer to the question "10 to the power ''what'' is equal to <math>y</math>?" Thus, <math>\lg 100</math> is the answer to the question "10 to the power ''what'' is equal to <math>1000</math>?"; this answer is clearly 3.
-
Notera här att <math>y</math> måste vara ett positivt tal för att logaritmen <math>\lg y</math> ska vara definerad, eftersom det inte finns någon potens av 10 som blir negativ eller noll.
+
Note that <math>y</math> must be a positive number for the logarithm <math>\lg y</math> to be defined, since there is no power of 10 that evaluates to a negative number or zero .
<div class="exempel">
<div class="exempel">
-
'''Exempel 1'''
+
''' Example 1'''
<ol type="a">
<ol type="a">
-
<li><math>\lg 100000 = 5\quad</math> eftersom <math>
+
<li><math>\lg 100000 = 5\quad</math> because <math>
10^{\,\bbox[#AAEEFF,1pt]{\scriptstyle\,5\vphantom{,}\,}}
10^{\,\bbox[#AAEEFF,1pt]{\scriptstyle\,5\vphantom{,}\,}}
= 100\,000</math>.</li>
= 100\,000</math>.</li>
-
<li><math>\lg 0{,}0001 = -4\quad</math> eftersom <math>
+
<li><math>\lg 0\textrm{.}0001 = -4\quad</math> because <math>
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-4\vphantom{,}\,}}
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-4\vphantom{,}\,}}
-
= 0{,}0001</math>.</li>
+
= 0\textrm{.}0001</math>.</li>
-
<li><math>\lg \sqrt{10} = \frac{1}{2}\quad</math> eftersom <math>
+
<li><math>\lg \sqrt{10} = \frac{1}{2}\quad</math> because <math>
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1/2\,}} = \sqrt{10}</math>.</li>
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1/2\,}} = \sqrt{10}</math>.</li>
-
<li><math>\lg 1 = 0\quad</math> eftersom <math>
+
<li><math>\lg 1 = 0\quad</math> because <math>
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,0\vphantom{,}\,}} = 1</math>.</li>
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,0\vphantom{,}\,}} = 1</math>.</li>
-
<li><math>\lg 10^{78} = 78\quad</math> eftersom <math>
+
<li><math>\lg 10^{78} = 78\quad</math> because <math>
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,78\vphantom{,}\,}}
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,78\vphantom{,}\,}}
= 10^{78}</math>.</li>
= 10^{78}</math>.</li>
-
<li><math>\lg 50 \approx 1{,}699\quad</math> eftersom <math>
+
<li><math>\lg 50 \approx 1\textrm{.}699\quad</math> because <math>
-
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1{,}699\,}} \approx 50</math>.</li>
+
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\textrm{.}699\,}} \approx 50</math>.</li>
-
<li><math>\lg (-10)</math> existerar inte eftersom <math>
+
<li><math>\lg (-10)</math> does not exist because <math>
-
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,a\vphantom{b,}\,}}</math> aldrig kan bli -10 oavsett hur <math>a</math> väljs.</li>
+
10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,a\vphantom{b,}\,}}</math> can never be -10 regardless of how <math>a</math> is chosen.</li>
</ol>
</ol>
</div>
</div>
-
I det näst sista exemplet kan man snabbt inse att <math>\lg 50</math> måste ligga någonstans mellan 1 och 2 eftersom <math>10^1 < 50 < 10^2</math>, men för att få fram ett mer exakt värde på det irrationella talet <math>\lg 50 = 1{,}69897\ldots</math> behövs i praktiken en miniräknare (eller tabell.)
+
In the second-to-last example, one can easily understand that <math>\lg 50</math> must lie somewhere between 1 and 2 since <math>10^1 < 50 < 10^2</math>. However, in practice to obtain a more precise value of the irrational number <math>\lg 50 = 1\textrm{.}69897\ldots</math> one needs a calculator (or table).
<div class="exempel">
<div class="exempel">
-
'''Exempel 2'''
+
''' Example 2'''
<ol type="a">
<ol type="a">
Line 93: Line 101:
-
== Olika baser ==
+
== Different bases ==
-
Man kan tänka sig logaritmer som använder en annan bas än 10 (utom 1!). Man måste då tydligt ange vilket tal man använder som bas för logaritmen. Använder man t.ex. 2 som bas skriver man <math>\log_{\,2}</math> för "2-logaritmen".
+
We can of course work with powers of numbers other than 10, answering questions like "2 to the power ''what'' is equal to 8?" The answers to questions of this type are also called logarithms, except ''to a different base''. In our example, we would say that the logarithm to base 2 of 8 is 3.
 +
 
 +
We write <math>\log_{\,2}</math> to mean a logarithm with base 2, and so on for other bases.
<div class="exempel">
<div class="exempel">
-
'''Exempel 3'''
+
''' Example 3'''
<ol type="a">
<ol type="a">
-
<li><math>\log_{\,2} 8 = 3\quad</math> eftersom <math>
+
<li><math>\log_{\,2} 8 = 3\quad</math> because <math>
2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,3\vphantom{,}\,}} = 8</math>.</li>
2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,3\vphantom{,}\,}} = 8</math>.</li>
-
<li><math>\log_{\,2} 2 = 1\quad</math> eftersom <math>
+
<li><math>\log_{\,2} 2 = 1\quad</math> because <math>
2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = 2</math>.</li>
2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = 2</math>.</li>
-
<li><math>\log_{\,2} 1024 = 10\quad</math> eftersom <math>
+
<li><math>\log_{\,2} 1024 = 10\quad</math> because <math>
2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,10\vphantom{,}\,}} = 1024</math>.</li>
2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,10\vphantom{,}\,}} = 1024</math>.</li>
-
<li><math>\log_{\,2}\frac{1}{4} = -2\quad</math> eftersom <math>
+
<li><math>\log_{\,2}\frac{1}{4} = -2\quad</math> because <math>
2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-2\vphantom{,}\,}} = \frac{1}{2^2}
2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-2\vphantom{,}\,}} = \frac{1}{2^2}
= \frac{1}{4}</math>.</li>
= \frac{1}{4}</math>.</li>
Line 113: Line 123:
</div>
</div>
-
På samma sätt fungerar logaritmer i andra baser.
+
We deal with bases like 3 or 5 in the same way.
<div class="exempel">
<div class="exempel">
-
'''Exempel 4'''
+
''' Example 4'''
<ol type="a">
<ol type="a">
-
<li><math> \log_{\,3} 9 = 2\quad</math> eftersom <math>
+
<li><math> \log_{\,3} 9 = 2\quad</math> because <math>
3^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2\vphantom{,}\,}} = 9</math>.</li>
3^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2\vphantom{,}\,}} = 9</math>.</li>
-
<li><math> \log_{\,5} 125 = 3\quad</math> eftersom <math>
+
<li><math> \log_{\,5} 125 = 3\quad</math> because <math>
5^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,3\vphantom{,}\,}} = 125</math>.</li>
5^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,3\vphantom{,}\,}} = 125</math>.</li>
-
<li><math> \log_{\,4} \frac{1}{16} = -2\quad</math> eftersom <math>
+
<li><math> \log_{\,4} \frac{1}{16} = -2\quad</math> because <math>
4^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-2\vphantom{,}\,}} = \frac{1}{4^2}
4^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-2\vphantom{,}\,}} = \frac{1}{4^2}
= \frac{1}{16}</math>.</li>
= \frac{1}{16}</math>.</li>
<li><math> \log_{\,b} \frac{1}{\sqrt{b}} = -\frac{1}{2}\quad
<li><math> \log_{\,b} \frac{1}{\sqrt{b}} = -\frac{1}{2}\quad
-
</math> eftersom <math>b^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-1/2\,}}
+
</math> as <math>b^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-1/2\,}}
-
= \frac{1}{b^{1/2}} = \frac{1}{\sqrt{b}}</math> (om <math>b>0</math> och <math>b\not=1</math>).</li>
+
= \frac{1}{b^{1/2}} = \frac{1}{\sqrt{b}}</math> (if <math>b>0</math> and <math>b\not=1</math>).</li>
</ol>
</ol>
</div>
</div>
-
Om basen 10 används, skriver man sällan <math>\log_{\,10}</math>, utan som vi tidigare sett lg, eller enbart log, vilket förekommer på många miniräknare.
+
If the base 10 is being used, one rarely writes <math>\log_{\,10}</math> except for emphasis. Instead, the notation <math> \lg </math> is used, or sometimes simply <math>\log</math> (beware, however: the notation <math>\log</math> can also be used in place of <math>\ln</math>, which you are about to meet; the meaning of <math>\log</math> on its own often depends on the context). These symbols appear on many calculators.
 +
Note that it makes no sense to define logarithms with base <math>1</math>, since 1 to the power anything is 1.
-
== Naturliga logaritmer ==
 
-
I praktiken är det två baser som oftast används för logaritmer, förutom 10 även talet <math>e</math> <math>({}\approx 2{,}71828 \ldots\,)</math>. Logaritmer med basen ''e'' kallas ''naturliga logaritmer'' och skrivs ln i stället för <math>\log_{\,e}</math>.
+
==The natural logarithms ==
 +
 
 +
In practice there are two bases that are commonly used for logarithms, 10 and the number <math>e</math> <math>({}\approx 2\textrm{.}71828 \ldots\,)</math>. (In some mathematical contexts, logarithms to base 2 are also used.) Logarithms using the base ''e'' are called '' natural logarithms'' and we use the notation <math>\ln</math> instead of <math>\log_{\,e}</math>.
<div class="exempel">
<div class="exempel">
-
'''Exempel 5'''
+
''' Example 5'''
<ol type="a">
<ol type="a">
-
<li><math> \ln 10 \approx 2{,}3\quad</math> eftersom <math>
+
<li><math> \ln 10 \approx 2{\textrm{.}}3\quad</math> because <math>
-
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2{,}3\,}} \approx 10</math>.</li>
+
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2{\textrm{.}}3\,}} \approx 10</math>.</li>
-
<li><math> \ln e = 1\quad</math> eftersom <math>
+
<li><math> \ln e = 1\quad</math> because <math>
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = e</math>.</li>
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = e</math>.</li>
-
<li><math> \ln\frac{1}{e^3} = -3\quad</math> eftersom <math>
+
<li><math> \ln\frac{1}{e^3} = -3\quad</math> because <math>
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-3\vphantom{,}\,}}
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-3\vphantom{,}\,}}
= \frac{1}{e^3}</math>.</li>
= \frac{1}{e^3}</math>.</li>
-
<li><math> \ln 1 = 0\quad</math> eftersom <math>
+
<li><math> \ln 1 = 0\quad</math> because <math>
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,0\vphantom{,}\,}} = 1</math>.</li>
e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,0\vphantom{,}\,}} = 1</math>.</li>
-
<li>Om <math>y= e^{\,a}</math> så är <math>a = \ln y</math>.</li>
+
<li>If <math>y= e^{\,a}</math> then <math>a = \ln y</math>.</li>
<li><math> e^{\,\bbox[#AAEEFF,1pt]{\,\ln 5\vphantom{,}\,}} = 5</math></li>
<li><math> e^{\,\bbox[#AAEEFF,1pt]{\,\ln 5\vphantom{,}\,}} = 5</math></li>
<li><math> e^{\,\bbox[#AAEEFF,1pt]{\,\ln x\vphantom{,}\,}} = x</math></li>
<li><math> e^{\,\bbox[#AAEEFF,1pt]{\,\ln x\vphantom{,}\,}} = x</math></li>
Line 158: Line 170:
</div>
</div>
-
På de flesta mer avancerade miniräknare finns vanligtvis knappar för 10-logaritmer och naturliga logaritmer.
+
Most advanced calculators have buttons for 10-logarithms and natural logarithms.
 +
The reason <math>e</math> is such an important base for logarithms will not really become clear until the second part of this course, when you study differentiation. In the meantime, please bear with us; "natural logarithms" might seem strange, but they really do turn out to be "natural".
-
== Logaritmlagar ==
 
-
Mellan år 1617 och 1624 publicerade Henry Biggs en logaritmtabell av alla heltal upp till 20 000 och år 1628 utökade Adriaan Vlacq tabellen till alla heltal upp till 100 000. Anledningen till att man la ned så enormt mycket arbete på sådana tabeller är att man med hjälp av logaritmer kan multiplicera ihop tal bara genom att addera ihop deras logaritmer (addition går mycket snabbare att utföra än multiplikation).
+
== Laws of Logarithms ==
 +
 
 +
Between the years 1617 and 1624 Henry Biggs published a table of logarithms for all integers up to 20 000, and in 1628 Adriaan Vlacq expanded the table for all integers up to 100 000. The reason such an enormous amount of work was invested in producing these tables is that with the help of logarithms one can multiply numbers together just by adding their logarithms (addition is a much faster calculation than multiplication).
<div class="exempel">
<div class="exempel">
-
'''Exempel 6'''
+
''' Example 6'''
-
Beräkna <math>\,35\cdot 54</math>.
+
Calculate <math>\,35\times 54</math>.
<br>
<br>
<br>
<br>
-
Om vi vet att <math>35 \approx 10^{\,1{,}5441}</math> och <math>54 \approx 10^{\,1{,}7324}</math> (dvs. <math>\lg 35 \approx 1{,}5441</math> och <math>\lg 54 \approx 1{,}7324</math>) då kan vi räkna ut att
+
If we know that <math>35 \approx 10^{\,1\textrm{.}5441}</math> and <math>54 \approx 10^{\,1\textrm{.}7324}</math> (i.e. <math>\lg 35 \approx 1\textrm{.}5441</math> and <math>\lg 54 \approx 1\textrm{.}7324</math>) then we can calculate that
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
-
35 \cdot 54 \approx 10^{\,1{,}5441} \cdot 10^{\,1{,}7324}
+
35 \times 54 \approx 10^{\,1\textrm{.}5441} \times 10^{\,1\textrm{.}7324}
-
= 10^{\,1{,}5441 + 1{,}7324}
+
= 10^{\,1\textrm{.}5441 + 1\textrm{.}7324}
-
= 10^{\,3{,}2765}</math>}}
+
= 10^{\,3\textrm{.}2765}</math>.}}
-
och vet vi sedan att <math>10^{\,3{,}2765} \approx 1890</math> (dvs. <math>\lg 1890 \approx 3{,}2765</math>) så har vi lyckats beräkna produkten
+
Since <math>10^{\,3\textrm{.}2765} \approx 1890</math> (i.e. <math>\lg 1890 \approx 3\textrm{.}2765</math>), we have thus managed to calculate the product
-
{{Fristående formel||<math>35 \cdot 54 = 1890</math>}}
+
{{Displayed math||<math>35 \times 54 = 1890</math>}}
-
och detta bara genom att addera ihop exponenterna <math>1{,}5441</math> och <math>1{,}7324</math>.
+
just by adding together the exponents <math>1\textrm{.}5441</math> and <math>1\textrm{.}7324</math>.
</div>
</div>
-
Detta är ett exempel på en logaritmlag som säger att
+
In the above example we have used a logarithmic law which states that
-
{{Fristående formel||<math>\log (ab) = \log a + \log b</math>}}
+
{{Displayed math||<math>\log (ab) = \log a + \log b</math>,}}
-
och som följer av att å ena sidan är
+
for all <math>a,b>0</math>. We can see that this is true by using the laws of exponents. Indeed,
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
-
a\cdot b = 10^{\textstyle\log a} \cdot 10^{\textstyle\log b}
+
a\times b = 10^{\textstyle\log a} \times 10^{\textstyle\log b}
-
= \left\{ \mbox{potenslagarna} \right\}
+
= 10^{\,\bbox[#AAEEFF,1pt]{\,\log a+\log b\,}}</math>}}
= 10^{\,\bbox[#AAEEFF,1pt]{\,\log a+\log b\,}}</math>}}
-
och å andra sidan är
+
and on the other hand,
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
-
a\cdot b = 10^{\,\bbox[#AAEEFF,1pt]{\,\log (ab)\,}}\,\mbox{.}</math>}}
+
a\times b = 10^{\,\bbox[#AAEEFF,1pt]{\,\log (ab)\,}}\,\mbox{.}</math>}}
-
Genom att utnyttja potenslagarna på detta sätt kan vi få fram motsvarande ''logaritmlagar'':
+
so that we can see <math>\log (ab) = \log a + \log b</math>. By exploiting the laws of exponents in this way we can obtain the corresponding ''laws of logarithms'':
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\log(ab) &= \log a + \log b,\\[4pt]
\log(ab) &= \log a + \log b,\\[4pt]
\log\frac{a}{b} &= \log a - \log b,\\[4pt]
\log\frac{a}{b} &= \log a - \log b,\\[4pt]
-
\log a^b &= b\cdot \log a\,\mbox{.}\\
+
\log a^b &= b\times \log a\,\mbox{,}\\
\end{align*}</math>}}
\end{align*}</math>}}
</div>
</div>
-
 
+
for <math>a,b>0</math>. These laws hold regardless of the base we are working with.
-
Logaritmlagarna gäller oavsett bas.
+
<div class="exempel">
<div class="exempel">
-
'''Exempel 7'''
+
''' Example 7'''
<ol type="a">
<ol type="a">
-
<li><math>\lg 4 + \lg 7 = \lg(4 \cdot 7) = \lg 28</math></li>
+
<li><math>\lg 4 + \lg 7 = \lg(4 \times 7) = \lg 28</math></li>
<li><math> \lg 6 - \lg 3 = \lg\frac{6}{3} = \lg 2</math></li>
<li><math> \lg 6 - \lg 3 = \lg\frac{6}{3} = \lg 2</math></li>
-
<li><math> 2 \cdot \lg 5 = \lg 5^2 = \lg 25</math></li>
+
<li><math> 2 \times \lg 5 = \lg 5^2 = \lg 25</math></li>
-
<li><math>\lg 200 = \lg(2 \cdot 100) = \lg 2 + \lg 100 = \lg 2 + 2</math></li>
+
<li><math>\lg 200 = \lg(2 \times 100) = \lg 2 + \lg 100 = \lg 2 + 2</math></li>
</ol>
</ol>
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 8'''
+
'''Example 8'''
<ol type="a">
<ol type="a">
-
<li><math>\lg 9 + \lg 1000 - \lg 3 + \lg 0{,}001 = \lg 9 + 3 - \lg 3 - 3
+
<li><math>\lg 9 + \lg 1000 - \lg 3 + \lg 0\textrm{.}001 = \lg 9 + 3 - \lg 3 - 3
= \lg 9- \lg 3 = \lg \displaystyle \frac{9}{3} = \lg 3</math></li>
= \lg 9- \lg 3 = \lg \displaystyle \frac{9}{3} = \lg 3</math></li>
<li><math>\ln\frac{1}{e} + \ln \sqrt{e}
<li><math>\ln\frac{1}{e} + \ln \sqrt{e}
-
= \ln\left(\frac{1}{e} \cdot \sqrt{e}\,\right)
+
= \ln\left(\frac{1}{e} \times \sqrt{e}\,\right)
-
= \ln\left( \frac{1}{(\sqrt{e}\,)^2} \cdot \sqrt{e}\,\right)
+
= \ln\left( \frac{1}{(\sqrt{e}\,)^2} \times \sqrt{e}\,\right)
= \ln\frac{1}{\sqrt{e}}</math><br>
= \ln\frac{1}{\sqrt{e}}</math><br>
<math>\phantom{\ln\frac{1}{e} + \ln \sqrt{e}}{} = \ln e^{-1/2}
<math>\phantom{\ln\frac{1}{e} + \ln \sqrt{e}}{} = \ln e^{-1/2}
-
= -\frac{1}{2} \cdot \ln e =-\frac{1}{2} \cdot 1
+
= -\frac{1}{2} \times \ln e =-\frac{1}{2} \times 1
= -\frac{1}{2}\vphantom{\biggl(}</math></li>
= -\frac{1}{2}\vphantom{\biggl(}</math></li>
<li><math> \log_2 36 - \frac{1}{2} \log_2 81
<li><math> \log_2 36 - \frac{1}{2} \log_2 81
-
= \log_2 (6 \cdot 6) - \frac{1}{2} \log_2 (9 \cdot 9)</math><br>
+
= \log_2 (6 \times 6) - \frac{1}{2} \log_2 (9 \times 9)</math><br>
<math>\phantom{\log_2 36 - \frac{1}{2} \log_2 81}{}
<math>\phantom{\log_2 36 - \frac{1}{2} \log_2 81}{}
-
= \log_2 (2\cdot 2 \cdot 3 \cdot 3)
+
= \log_2 (2\times 2 \times 3 \times 3)
-
- \frac{1}{2} \log_2 (3 \cdot 3 \cdot 3 \cdot 3)</math><br>
+
- \frac{1}{2} \log_2 (3 \times 3 \times 3 \times 3)</math><br>
<math>\phantom{\log_2 36 - \frac{1}{2} \log_2 81}{}
<math>\phantom{\log_2 36 - \frac{1}{2} \log_2 81}{}
-
= \log_2 (2^2 \cdot 3^2)
+
= \log_2 (2^2 \times 3^2)
- \frac{1}{2} \log_2 (3^4)\vphantom{\Bigl(}</math><br>
- \frac{1}{2} \log_2 (3^4)\vphantom{\Bigl(}</math><br>
<math>\phantom{\log_2 36 - \frac{1}{2} \log_2 81}{}
<math>\phantom{\log_2 36 - \frac{1}{2} \log_2 81}{}
= \log_2 2^2 + \log_2 3^2 - \frac{1}{2} \log_2 3^4</math><br>
= \log_2 2^2 + \log_2 3^2 - \frac{1}{2} \log_2 3^4</math><br>
<math>\phantom{\log_2 36 - \frac{1}{2} \log_2 81}{}
<math>\phantom{\log_2 36 - \frac{1}{2} \log_2 81}{}
-
= 2 \log_2 2 + 2 \log_2 3 - \frac{1}{2} \cdot 4 \log_2 3</math><br>
+
= 2 \log_2 2 + 2 \log_2 3 - \frac{1}{2} \times 4 \log_2 3</math><br>
<math>\phantom{\log_2 36 - \frac{1}{2} \log_2 81}{}
<math>\phantom{\log_2 36 - \frac{1}{2} \log_2 81}{}
-
= 2\cdot 1 + 2 \log_2 3 - 2 \log_2 3 = 2\vphantom{\Bigl(}</math></li>
+
= 2\times 1 + 2 \log_2 3 - 2 \log_2 3 = 2\vphantom{\Bigl(}</math></li>
<li><math> \lg a^3 - 2 \lg a + \lg\frac{1}{a}
<li><math> \lg a^3 - 2 \lg a + \lg\frac{1}{a}
= 3 \lg a - 2 \lg a + \lg a^{-1}</math><br>
= 3 \lg a - 2 \lg a + \lg a^{-1}</math><br>
Line 259: Line 271:
-
== Byte av bas ==
+
== Changing the base ==
-
Ibland kan det vara bra att kunna uttrycka en logaritm som en logaritm av en annan bas.
+
It is sometimes a good idea to express a logarithm as a logarithm with respect to another base.
<div class="exempel">
<div class="exempel">
-
'''Exempel 9'''
+
''' Example 9'''
<ol type="a">
<ol type="a">
-
<li>Uttryck <math>\lg 5</math> i naturliga logaritmen.
+
<li> Express <math>\lg 5</math> as a natural logarithm.
<br>
<br>
<br>
<br>
-
Per definition är <math>\lg 5</math> det tal som uppfyller likheten
+
By definition, <math>\lg 5</math> is a number that satisfies the equality
-
{{Fristående formel||<math>10^{\lg 5} = 5\,\mbox{.}</math>}}
+
{{Displayed math||<math>10^{\lg 5} = 5\,\mbox{.}</math>}}
-
Logaritmera båda led med ln (naturliga logaritmen)
+
Taking the natural logarithm ( <math>\ln</math>) of both sides yields
-
{{Fristående formel||<math>\ln 10^{\lg 5} = \ln 5\,\mbox{.}</math>}}
+
{{Displayed math||<math>\ln 10^{\lg 5} = \ln 5\,\mbox{.}</math>}}
-
Med hjälp av logaritmlagen <math>\ln a^b = b \ln a</math> kan vänsterledet skrivas som <math>\lg 5 \cdot \ln 10</math> och likheten blir
+
With the help of the logarithm law <math>\ln a^b = b \ln a</math>, the left-hand side can be written as <math>\lg 5 \times \ln 10</math> and the equality becomes
-
{{Fristående formel||<math>\lg 5 \cdot \ln 10 = \ln 5\,\mbox{.}</math>}}
+
{{Displayed math||<math>\lg 5 \times \ln 10 = \ln 5\,\mbox{.}</math>}}
-
Dela nu båda led med <math>\ln 10</math> så får vi svaret
+
Now divide both sides by <math>\ln 10</math> to get the answer
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\lg 5 = \frac{\ln 5}{\ln 10}
\lg 5 = \frac{\ln 5}{\ln 10}
-
\qquad (\approx 0{,}699\,,
+
\qquad (\approx 0\textrm{.}699\,,
-
\quad\text{dvs.}\ 10^{0{,}699} \approx 5)\,\mbox{.}
+
\quad\text{dvs.}\ 10^{0\textrm{.}699} \approx 5)\,\mbox{.}
</math>}}</li>
</math>}}</li>
-
<li> Uttryck 2-logaritmen för 100 i 10-logaritmen lg.
+
<li> Express the 2-logarithm of 100 as a 10-logarithm lg.
<br>
<br>
<br>
<br>
-
Om vi skriver upp sambandet som definierar <math>\log_2 100</math>
+
Using the definition of a logarithm one has that <math>\log_2 100</math> formally satisfies
-
{{Fristående formel||<math>2^{\log_{\scriptstyle 2} 100} = 100</math>}}
+
{{Displayed math||<math>2^{\log_{\scriptstyle 2} 100} = 100</math>.}}
-
och logaritmerar båda led med 10-logaritmen (lg) så får vi att
+
Taking the 10-logarithm of both sides, we get
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\lg 2^{\log_{\scriptstyle 2} 100} = \lg 100\,\mbox{.}</math>}}
\lg 2^{\log_{\scriptstyle 2} 100} = \lg 100\,\mbox{.}</math>}}
-
Eftersom <math>\lg a^b = b \lg a</math> så är <math>\lg 2^{\log_2 100} = \log_{\scriptstyle 2} 100 \cdot \lg 2</math> och högerledet kan förenklas till <math>\lg 100 = 2</math>. Detta ger oss likheten
+
Since <math>\lg a^b = b \lg a</math> we get <math>\lg 2^{\log_2 100} = \log_{\scriptstyle 2} 100 \times \lg 2</math>, and moreover the right-hand side can be simplified to <math>\lg 100 = 2</math>. Thus we see that
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
-
\log_{\scriptstyle 2} 100 \cdot \lg 2 = 2\,\mbox{.}</math>}}
+
\log_{\scriptstyle 2} 100 \times \lg 2 = 2\,\mbox{.}</math>}}
-
Division med <math>\lg 2</math> ger slutligen att
+
Finally, dividing by <math>\lg 2</math> gives
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\log_{\scriptstyle 2} 100 = \frac{2}{\lg 2}
\log_{\scriptstyle 2} 100 = \frac{2}{\lg 2}
-
\qquad ({}\approx 6{,}64\,,
+
\qquad ({}\approx 6\textrm{.}64\,,
-
\quad\text{dvs.}\ 2^{6{,}64}\approx 100 )\,\mbox{.}</math>}}
+
\quad\text{that is}\ 2^{6\textrm{.}64}\approx 100 )\,\mbox{.}</math>}}
</ol>
</ol>
</div>
</div>
-
Den allmänna formeln för byte från en bas <math>a</math> till en bas <math>b</math> kan härledas på samma sätt
+
The general formula for changing from one base <math>a</math> to another base <math>b</math> is
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
\log_{\scriptstyle\,a} x
\log_{\scriptstyle\,a} x
= \frac{\log_{\scriptstyle\, b} x}{\log_{\scriptstyle\, b} a}
= \frac{\log_{\scriptstyle\, b} x}{\log_{\scriptstyle\, b} a}
-
\,\mbox{.}</math>}}
+
\,\mbox{,}</math>}}
-
Vill man byta bas i en potens kan man göra detta med hjälp av logaritmer. Om man exempelvis vill skriva <math> 2^5 </math> med basen 10 så skriver man först om 2 med basen 10,
+
and can be derived in the same way. We can also change the base of a power using logarithms. For instance, if we want to write <math> 2^5 </math> using the base 10 first write 2 as a power with the base 10:
-
{{Fristående formel||<math>2 = 10^{\lg 2}</math>}}
+
{{Displayed math||<math>2 = 10^{\lg 2}</math>.}}
-
och utnyttjar sedan en av potenslagarna
+
Then, using one of the laws of exponents,
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
-
2^5 = (10^{\lg 2})^5 = 10^{5\cdot \lg 2}
+
2^5 = (10^{\lg 2})^5 = 10^{5\times \lg 2}
-
\quad ({}\approx 10^{1,505}\,)\,\mbox{.}</math>}}
+
\quad ({}\approx 10^{1\textrm{.}505}\,)\,\mbox{.}</math>}}
<div class="exempel">
<div class="exempel">
-
'''Exempel 10'''
+
''' Example 10'''
<ol type="a">
<ol type="a">
-
<li>Skriv <math> 10^x </math> med basen ''e''.
+
<li>Write <math> 10^x </math> using the base ''e''.
<br>
<br>
<br>
<br>
-
Först skriver vi 10 som en potens av ''e'',
+
First, we write 10 as a power of ''e'',
-
{{Fristående formel||<math>10 = e^{\ln 10}</math>}}
+
{{Displayed math||<math>10 = e^{\ln 10}</math>.}}
-
och använder sedan potenslagarna
+
Using the the laws of exponents we can then see that
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
-
10^x = (e^{\ln 10})^x = e^{\,x \cdot \ln 10}
+
10^x = (e^{\ln 10})^x = e^{\,x \times \ln 10}
-
\approx e^{2{,}3 x}\,\mbox{.}</math>}}</li>
+
\approx e^{2\textrm{.}3 x}\,\mbox{.}</math>}}</li>
-
<li>Skriv <math>e^{\,a}</math> med basen 10.
+
<li> Write <math>e^{\,a}</math> using the base 10.
<br>
<br>
<br>
<br>
-
Talet <math>e</math> kan vi skriva som <math>e=10^{\lg e}</math> och därför är
+
The number <math>e</math> can be written as <math>e=10^{\lg e}</math> and therefore
-
{{Fristående formel||<math>
+
{{Displayed math||<math>
e^a = (10^{\lg e})^a
e^a = (10^{\lg e})^a
-
= 10^{\,a \cdot \lg e}
+
= 10^{\,a \times \lg e}
-
\approx 10^{\,0{,}434a}\,\mbox{.}</math>}}
+
\approx 10^{\,0\textrm{.}434a}\,\mbox{.}</math>}}
</ol>
</ol>
</div>
</div>
-
[[3.3 Övningar|Övningar]]
+
[[3.3 Exercises|Exercises]]
<div class="inforuta" style="width:580px;">
<div class="inforuta" style="width:580px;">
-
'''Råd för inläsning'''
+
'''Study advice'''
-
'''Grund- och slutprov'''
+
'''The basic and final tests'''
-
Efter att du har läst texten och arbetat med övningarna ska du göra grund- och slutprovet för att bli godkänd på detta avsnitt. Du hittar länken till proven i din student lounge.
+
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
-
'''Tänk på att:'''
+
'''Keep in mind that... '''
-
Du kan behöva lägga ner mycket tid på logaritmer.
+
You may need to spend some time studying logarithms.
-
Logaritmer brukar behandlas översiktligt i gymnasiet. Därför brukar många högskolestudenter stöta på problem när det gäller att räkna med logaritmer.
+
Logarithms are not usually dealt with in detail in secondary school, but become more important at university; this can cause problems.
-
'''Lästips'''
+
'''Reviews'''
-
För dig som vill fördjupa dig ytterligare eller behöver en längre förklaring
+
For those of you who want to deepen your understanding or need more detailed explanations consider the following references:
-
[http://en.wikipedia.org/wiki/Logarithm Läs mer om logaritmer på engelska Wikipedia]
+
[http://en.wikipedia.org/wiki/Logarithm Learn more about logarithms on Wikipedia ]
-
[http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/e.html Läs mer om Talet ''e'' i The MacTutor History of Mathematics archive]
+
[http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/e.html Learn more about the number ''e'' in The MacTutor History of Mathematics archive ]
-
'''Länktips'''
+
'''Useful web sites'''
-
[http://www.ltcconline.net/greenl/java/IntermedCollegeAlgebra/LogGraph/logGraph.html Experimentera med logaritmer och potenser]
+
[http://www.ltcconline.net/greenl/java/IntermedCollegeAlgebra/LogGraph/logGraph.html Experiment with logarithms and powers ]
-
[http://www.ltcconline.net/greenl/java/IntermedCollegeAlgebra/LogConcentration/LogConcentration.htm Spela logaritm Memory]
+
[http://www.ltcconline.net/greenl/java/IntermedCollegeAlgebra/LogConcentration/LogConcentration.htm Play logarithm Memory ]
-
[http://www.ltcconline.net/greenl/java/IntermedCollegeAlgebra/logger.htm Hjälp grodan hoppa till sitt näckrosblad i "log"-spelet ]
+
[http://www.ltcconline.net/greenl/java/IntermedCollegeAlgebra/logger.htm Help the frog to jump onto his water-lily leaf in the "log" game]
</div>
</div>

Current revision

       Theory          Exercises      

Contents:

  • Logarithms
  • Fundamental Laws of Logarithms

Learning outcomes:

After this section, you will have learned:

  • The concepts of base and exponent.
  • The meaning of the notation \displaystyle \ln, \displaystyle \lg, \displaystyle \log and \displaystyle \log_{a}.
  • To calculate simple logarithmic expressions using the definition of a logarithm.
  • That logarithms are only defined for positive numbers.
  • The value of the number \displaystyle e.
  • To use the laws of logarithms to simplify logarithmic expressions.
  • To know when the laws of logarithms are valid.
  • To express a logarithm in terms of a logarithm with a different base.

Logarithms to the base 10

We often use powers with base \displaystyle 10 to represent large and small numbers, for example

\displaystyle \begin{align*}
   10^3 &= 10 \times 10 \times 10 = 1000\,,\\
   10^{-2} &= \frac{1}{10 \times 10} = \frac{1}{100} = 0\textrm{.}01\,\mbox{.}
 \end{align*}

Informally, we might say that that

"the exponent of 1000 is 3",

or

"the exponent of 0.01 is -2".

In fact, though, the term logarithm is used instead , and we say:

"The logarithm of 1000 is 3",

which is written as \displaystyle \lg 1000 = 3, and

"The logarithm of 0.01 is -2",

which is written as \displaystyle \lg 0\textrm{.}01 = -2.

More generally, we say:

The logarithm of a number \displaystyle y is denoted by \displaystyle \lg y and is the real number \displaystyle x in the blue box which satisfies the equality
\displaystyle 10^{\ \bbox[#AAEEFF,2pt]{\,x\,}} = y\,\mbox{.}

One way to think about this is that the logarithm of \displaystyle y is the answer to the question "10 to the power what is equal to \displaystyle y?" Thus, \displaystyle \lg 100 is the answer to the question "10 to the power what is equal to \displaystyle 1000?"; this answer is clearly 3.

Note that \displaystyle y must be a positive number for the logarithm \displaystyle \lg y to be defined, since there is no power of 10 that evaluates to a negative number or zero .

Example 1

  1. \displaystyle \lg 100000 = 5\quad because \displaystyle 10^{\,\bbox[#AAEEFF,1pt]{\scriptstyle\,5\vphantom{,}\,}} = 100\,000.
  2. \displaystyle \lg 0\textrm{.}0001 = -4\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-4\vphantom{,}\,}} = 0\textrm{.}0001.
  3. \displaystyle \lg \sqrt{10} = \frac{1}{2}\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1/2\,}} = \sqrt{10}.
  4. \displaystyle \lg 1 = 0\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,0\vphantom{,}\,}} = 1.
  5. \displaystyle \lg 10^{78} = 78\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,78\vphantom{,}\,}} = 10^{78}.
  6. \displaystyle \lg 50 \approx 1\textrm{.}699\quad because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\textrm{.}699\,}} \approx 50.
  7. \displaystyle \lg (-10) does not exist because \displaystyle 10^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,a\vphantom{b,}\,}} can never be -10 regardless of how \displaystyle a is chosen.

In the second-to-last example, one can easily understand that \displaystyle \lg 50 must lie somewhere between 1 and 2 since \displaystyle 10^1 < 50 < 10^2. However, in practice to obtain a more precise value of the irrational number \displaystyle \lg 50 = 1\textrm{.}69897\ldots one needs a calculator (or table).

Example 2

  1. \displaystyle 10^{\textstyle\,\lg 100} = 100
  2. \displaystyle 10^{\textstyle\,\lg a} = a
  3. \displaystyle 10^{\textstyle\,\lg 50} = 50


Different bases

We can of course work with powers of numbers other than 10, answering questions like "2 to the power what is equal to 8?" The answers to questions of this type are also called logarithms, except to a different base. In our example, we would say that the logarithm to base 2 of 8 is 3.

We write \displaystyle \log_{\,2} to mean a logarithm with base 2, and so on for other bases.

Example 3

  1. \displaystyle \log_{\,2} 8 = 3\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,3\vphantom{,}\,}} = 8.
  2. \displaystyle \log_{\,2} 2 = 1\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = 2.
  3. \displaystyle \log_{\,2} 1024 = 10\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,10\vphantom{,}\,}} = 1024.
  4. \displaystyle \log_{\,2}\frac{1}{4} = -2\quad because \displaystyle 2^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-2\vphantom{,}\,}} = \frac{1}{2^2} = \frac{1}{4}.

We deal with bases like 3 or 5 in the same way.

Example 4

  1. \displaystyle \log_{\,3} 9 = 2\quad because \displaystyle 3^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2\vphantom{,}\,}} = 9.
  2. \displaystyle \log_{\,5} 125 = 3\quad because \displaystyle 5^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,3\vphantom{,}\,}} = 125.
  3. \displaystyle \log_{\,4} \frac{1}{16} = -2\quad because \displaystyle 4^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-2\vphantom{,}\,}} = \frac{1}{4^2} = \frac{1}{16}.
  4. \displaystyle \log_{\,b} \frac{1}{\sqrt{b}} = -\frac{1}{2}\quad as \displaystyle b^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-1/2\,}} = \frac{1}{b^{1/2}} = \frac{1}{\sqrt{b}} (if \displaystyle b>0 and \displaystyle b\not=1).

If the base 10 is being used, one rarely writes \displaystyle \log_{\,10} except for emphasis. Instead, the notation \displaystyle \lg is used, or sometimes simply \displaystyle \log (beware, however: the notation \displaystyle \log can also be used in place of \displaystyle \ln, which you are about to meet; the meaning of \displaystyle \log on its own often depends on the context). These symbols appear on many calculators.

Note that it makes no sense to define logarithms with base \displaystyle 1, since 1 to the power anything is 1.


The natural logarithms

In practice there are two bases that are commonly used for logarithms, 10 and the number \displaystyle e \displaystyle ({}\approx 2\textrm{.}71828 \ldots\,). (In some mathematical contexts, logarithms to base 2 are also used.) Logarithms using the base e are called natural logarithms and we use the notation \displaystyle \ln instead of \displaystyle \log_{\,e}.

Example 5

  1. \displaystyle \ln 10 \approx 2{\textrm{.}}3\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,2{\textrm{.}}3\,}} \approx 10.
  2. \displaystyle \ln e = 1\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,1\vphantom{,}\,}} = e.
  3. \displaystyle \ln\frac{1}{e^3} = -3\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,-3\vphantom{,}\,}} = \frac{1}{e^3}.
  4. \displaystyle \ln 1 = 0\quad because \displaystyle e^{\scriptstyle\,\bbox[#AAEEFF,1pt]{\,0\vphantom{,}\,}} = 1.
  5. If \displaystyle y= e^{\,a} then \displaystyle a = \ln y.
  6. \displaystyle e^{\,\bbox[#AAEEFF,1pt]{\,\ln 5\vphantom{,}\,}} = 5
  7. \displaystyle e^{\,\bbox[#AAEEFF,1pt]{\,\ln x\vphantom{,}\,}} = x

Most advanced calculators have buttons for 10-logarithms and natural logarithms.

The reason \displaystyle e is such an important base for logarithms will not really become clear until the second part of this course, when you study differentiation. In the meantime, please bear with us; "natural logarithms" might seem strange, but they really do turn out to be "natural".


Laws of Logarithms

Between the years 1617 and 1624 Henry Biggs published a table of logarithms for all integers up to 20 000, and in 1628 Adriaan Vlacq expanded the table for all integers up to 100 000. The reason such an enormous amount of work was invested in producing these tables is that with the help of logarithms one can multiply numbers together just by adding their logarithms (addition is a much faster calculation than multiplication).

Example 6

Calculate \displaystyle \,35\times 54.

If we know that \displaystyle 35 \approx 10^{\,1\textrm{.}5441} and \displaystyle 54 \approx 10^{\,1\textrm{.}7324} (i.e. \displaystyle \lg 35 \approx 1\textrm{.}5441 and \displaystyle \lg 54 \approx 1\textrm{.}7324) then we can calculate that

\displaystyle
 35 \times 54 \approx 10^{\,1\textrm{.}5441} \times 10^{\,1\textrm{.}7324}
             = 10^{\,1\textrm{.}5441 + 1\textrm{.}7324}
             = 10^{\,3\textrm{.}2765}.

Since \displaystyle 10^{\,3\textrm{.}2765} \approx 1890 (i.e. \displaystyle \lg 1890 \approx 3\textrm{.}2765), we have thus managed to calculate the product

\displaystyle 35 \times 54 = 1890

just by adding together the exponents \displaystyle 1\textrm{.}5441 and \displaystyle 1\textrm{.}7324.

In the above example we have used a logarithmic law which states that

\displaystyle \log (ab) = \log a + \log b,

for all \displaystyle a,b>0. We can see that this is true by using the laws of exponents. Indeed,

\displaystyle
 a\times b = 10^{\textstyle\log a} \times 10^{\textstyle\log b}
          = 10^{\,\bbox[#AAEEFF,1pt]{\,\log a+\log b\,}}

and on the other hand,

\displaystyle
 a\times b = 10^{\,\bbox[#AAEEFF,1pt]{\,\log (ab)\,}}\,\mbox{.}

so that we can see \displaystyle \log (ab) = \log a + \log b. By exploiting the laws of exponents in this way we can obtain the corresponding laws of logarithms:

\displaystyle \begin{align*}
   \log(ab) &= \log a + \log b,\\[4pt]
   \log\frac{a}{b} &= \log a - \log b,\\[4pt]
   \log a^b &= b\times \log a\,\mbox{,}\\
 \end{align*}

for \displaystyle a,b>0. These laws hold regardless of the base we are working with.

Example 7

  1. \displaystyle \lg 4 + \lg 7 = \lg(4 \times 7) = \lg 28
  2. \displaystyle \lg 6 - \lg 3 = \lg\frac{6}{3} = \lg 2
  3. \displaystyle 2 \times \lg 5 = \lg 5^2 = \lg 25
  4. \displaystyle \lg 200 = \lg(2 \times 100) = \lg 2 + \lg 100 = \lg 2 + 2

Example 8

  1. \displaystyle \lg 9 + \lg 1000 - \lg 3 + \lg 0\textrm{.}001 = \lg 9 + 3 - \lg 3 - 3 = \lg 9- \lg 3 = \lg \displaystyle \frac{9}{3} = \lg 3
  2. \displaystyle \ln\frac{1}{e} + \ln \sqrt{e} = \ln\left(\frac{1}{e} \times \sqrt{e}\,\right) = \ln\left( \frac{1}{(\sqrt{e}\,)^2} \times \sqrt{e}\,\right) = \ln\frac{1}{\sqrt{e}}
    \displaystyle \phantom{\ln\frac{1}{e} + \ln \sqrt{e}}{} = \ln e^{-1/2} = -\frac{1}{2} \times \ln e =-\frac{1}{2} \times 1 = -\frac{1}{2}\vphantom{\biggl(}
  3. \displaystyle \log_2 36 - \frac{1}{2} \log_2 81 = \log_2 (6 \times 6) - \frac{1}{2} \log_2 (9 \times 9)
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = \log_2 (2\times 2 \times 3 \times 3) - \frac{1}{2} \log_2 (3 \times 3 \times 3 \times 3)
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = \log_2 (2^2 \times 3^2) - \frac{1}{2} \log_2 (3^4)\vphantom{\Bigl(}
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = \log_2 2^2 + \log_2 3^2 - \frac{1}{2} \log_2 3^4
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = 2 \log_2 2 + 2 \log_2 3 - \frac{1}{2} \times 4 \log_2 3
    \displaystyle \phantom{\log_2 36 - \frac{1}{2} \log_2 81}{} = 2\times 1 + 2 \log_2 3 - 2 \log_2 3 = 2\vphantom{\Bigl(}
  4. \displaystyle \lg a^3 - 2 \lg a + \lg\frac{1}{a} = 3 \lg a - 2 \lg a + \lg a^{-1}
    \displaystyle \phantom{\lg a^3 - 2 \lg a + \lg\frac{1}{a}}{} = (3-2)\lg a + (-1) \lg a = \lg a - \lg a = 0


Changing the base

It is sometimes a good idea to express a logarithm as a logarithm with respect to another base.

Example 9

  1. Express \displaystyle \lg 5 as a natural logarithm.

    By definition, \displaystyle \lg 5 is a number that satisfies the equality
    \displaystyle 10^{\lg 5} = 5\,\mbox{.}

    Taking the natural logarithm ( \displaystyle \ln) of both sides yields

    \displaystyle \ln 10^{\lg 5} = \ln 5\,\mbox{.}

    With the help of the logarithm law \displaystyle \ln a^b = b \ln a, the left-hand side can be written as \displaystyle \lg 5 \times \ln 10 and the equality becomes

    \displaystyle \lg 5 \times \ln 10 = \ln 5\,\mbox{.}

    Now divide both sides by \displaystyle \ln 10 to get the answer

    \displaystyle
     \lg 5 = \frac{\ln 5}{\ln 10}
     \qquad (\approx 0\textrm{.}699\,,
     \quad\text{dvs.}\ 10^{0\textrm{.}699} \approx 5)\,\mbox{.}
    

  2. Express the 2-logarithm of 100 as a 10-logarithm lg.

    Using the definition of a logarithm one has that \displaystyle \log_2 100 formally satisfies
    \displaystyle 2^{\log_{\scriptstyle 2} 100} = 100.

    Taking the 10-logarithm of both sides, we get

    \displaystyle
     \lg 2^{\log_{\scriptstyle 2} 100} = \lg 100\,\mbox{.}
    

    Since \displaystyle \lg a^b = b \lg a we get \displaystyle \lg 2^{\log_2 100} = \log_{\scriptstyle 2} 100 \times \lg 2, and moreover the right-hand side can be simplified to \displaystyle \lg 100 = 2. Thus we see that

    \displaystyle
     \log_{\scriptstyle 2} 100 \times \lg 2 = 2\,\mbox{.}
    

    Finally, dividing by \displaystyle \lg 2 gives

    \displaystyle
     \log_{\scriptstyle 2} 100 = \frac{2}{\lg 2}
     \qquad ({}\approx 6\textrm{.}64\,,
     \quad\text{that is}\ 2^{6\textrm{.}64}\approx 100 )\,\mbox{.}
    

The general formula for changing from one base \displaystyle a to another base \displaystyle b is

\displaystyle
 \log_{\scriptstyle\,a} x
  = \frac{\log_{\scriptstyle\, b} x}{\log_{\scriptstyle\, b} a}
  \,\mbox{,}

and can be derived in the same way. We can also change the base of a power using logarithms. For instance, if we want to write \displaystyle 2^5 using the base 10 first write 2 as a power with the base 10:

\displaystyle 2 = 10^{\lg 2}.

Then, using one of the laws of exponents,

\displaystyle
 2^5 = (10^{\lg 2})^5 = 10^{5\times \lg 2}
 \quad ({}\approx 10^{1\textrm{.}505}\,)\,\mbox{.}

Example 10

  1. Write \displaystyle 10^x using the base e.

    First, we write 10 as a power of e,
    \displaystyle 10 = e^{\ln 10}.

    Using the the laws of exponents we can then see that

    \displaystyle
     10^x = (e^{\ln 10})^x = e^{\,x \times \ln 10}
          \approx e^{2\textrm{.}3 x}\,\mbox{.}
    
  2. Write \displaystyle e^{\,a} using the base 10.

    The number \displaystyle e can be written as \displaystyle e=10^{\lg e} and therefore
    \displaystyle
     e^a = (10^{\lg e})^a
         = 10^{\,a \times \lg e}
         \approx 10^{\,0\textrm{.}434a}\,\mbox{.}
    


Exercises

Study advice

The basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that...

You may need to spend some time studying logarithms.

Logarithms are not usually dealt with in detail in secondary school, but become more important at university; this can cause problems.


Reviews

For those of you who want to deepen your understanding or need more detailed explanations consider the following references:

Learn more about logarithms on Wikipedia

Learn more about the number e in The MacTutor History of Mathematics archive


Useful web sites

Experiment with logarithms and powers

Play logarithm Memory

Help the frog to jump onto his water-lily leaf in the "log" game