Solution 4.2:6
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 4.2:6 moved to Solution 4.2:6: Robot: moved page)  | 
				m   | 
			||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | + | We can work out the length we are looking for by taking the difference  <math>a-b</math> of the sides <math>a</math> and <math>b</math> in the triangles below.  | |
| - | <  | + | |
| - | + | [[Image:4_2_6_13.gif|center]][[Image:4_2_6_2.gif|center]]  | |
| - | [[Image:4_2_6_13.gif|center]]  | + | |
| - | [[Image:4_2_6_2.gif|center]]  | + | If we take the tangent of the given angle in each triangle, we easily obtain <math>a</math> and <math>b</math>.  | 
| - | [[Image:4_2_6_13.gif  | + | |
| - | [[Image:4_2_6_4.gif  | + | {| width="100%"  | 
| + | ||[[Image:4_2_6_13.gif]]  | ||
| + | ||<math>a = 1\cdot\tan 60^{\circ} = \frac{\sin 60^{\circ}}{\cos 60^{\circ}} = \frac{\dfrac{\sqrt{3}}{2}}{\dfrac{1}{2}} = \sqrt{3}</math>  | ||
| + | |-  | ||
| + | ||[[Image:4_2_6_4.gif]]  | ||
| + | ||<math>b = 1\cdot\tan 45^{\circ} = \frac{\sin 45^{\circ}}{\cos 45^{\circ}} = \frac{\dfrac{1}{\sqrt{2}}}{\dfrac{1}{\sqrt{2}}} = 1</math>  | ||
| + | |}  | ||
| + | |||
| + | Hence,  | ||
| + | |||
| + | {{Displayed math||<math>x = a-b = \sqrt{3}-1\,\textrm{.}</math>}}  | ||
Current revision
We can work out the length we are looking for by taking the difference \displaystyle a-b of the sides \displaystyle a and \displaystyle b in the triangles below.
If we take the tangent of the given angle in each triangle, we easily obtain \displaystyle a and \displaystyle b.
Hence,
| \displaystyle x = a-b = \sqrt{3}-1\,\textrm{.} | 



