Solution 4.1:9
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 4.1:9 moved to Solution 4.1:9: Robot: moved page) |
m |
||
(One intermediate revision not shown.) | |||
Line 1: | Line 1: | ||
- | {{ | + | 10 seconds corresponds to 1/6 minutes, so that during that time period, the second hand sweeps over 1/6 of a turn, i.e. the sector of a circle with angle |
+ | |||
+ | {{Displayed math||<math>\alpha = \frac{1}{6}\cdot 2\pi\ \text{radians} = \frac{\pi}{3}\ \text{radians.}</math>}} | ||
+ | |||
<center> [[Image:4_1_9_.gif]] </center> | <center> [[Image:4_1_9_.gif]] </center> | ||
- | < | + | The area of the sector is |
- | + | ||
+ | {{Displayed math||<math>\text{Area} = \frac{1}{2}\alpha r^{2} = \frac{1}{2}\cdot \frac{\pi}{3}\cdot (8\ \text{cm})^2 = \frac{32\pi}{3}\ \text{cm}^{2} \approx 33\textrm{.}5\ \text{cm}^{2}\,\textrm{.}</math>}} |
Current revision
10 seconds corresponds to 1/6 minutes, so that during that time period, the second hand sweeps over 1/6 of a turn, i.e. the sector of a circle with angle
\displaystyle \alpha = \frac{1}{6}\cdot 2\pi\ \text{radians} = \frac{\pi}{3}\ \text{radians.} |

The area of the sector is
\displaystyle \text{Area} = \frac{1}{2}\alpha r^{2} = \frac{1}{2}\cdot \frac{\pi}{3}\cdot (8\ \text{cm})^2 = \frac{32\pi}{3}\ \text{cm}^{2} \approx 33\textrm{.}5\ \text{cm}^{2}\,\textrm{.} |