Solution 3.3:6a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.3:6a moved to Solution 3.3:6a: Robot: moved page)  | 
				m   | 
			||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | The calculator does not have button for <math>\log_{3}</math>, but it does have one for the natural logarithm ln, so we need to rewrite <math>\log_{3}4</math> in terms of ln.  | 
| - | <  | + | |
| - | {{  | + | If we go back to the definition of the logarithm, we see that <math>\log _{3}4</math> is that number which satisfies   | 
| - | {{  | + | |
| - | <  | + | {{Displayed math||<math>3^{\log _{3}4} = 4\,\textrm{.}</math>}}  | 
| - | {{  | + | |
| - | + | Now, take the natural logarithm of both sides,  | |
| + | |||
| + | {{Displayed math||<math>\ln 3^{\log _{3}4}=\ln 4\,\textrm{.}</math>}}  | ||
| + | |||
| + | Using the logarithm law, <math>\lg a^b = b\lg a</math>, the left-hand side can be written as <math>\log_{3}4\cdot\ln 3</math> and the relation is  | ||
| + | |||
| + | {{Displayed math||<math>\log_{3}4\cdot \ln 3 = \ln 4\,\textrm{.}</math>}}  | ||
| + | |||
| + | Thus, after dividing by <math>\ln 3</math>, we have  | ||
| + | |||
| + | {{Displayed math||<math>\log_{3}4 = \frac{\ln 4}{\ln 3} = \frac{1\textrm{.}386294\,\ldots}{1\textrm{.}098612\,\ldots} = 1\textrm{.}2618595\,\ldots</math>}}  | ||
| + | |||
| + | which gives 1.262 as the rounded-off answer.  | ||
| + | |||
| + | |||
| + | Note: On the calculator, the answer is obtained by pressing the buttons  | ||
| + | |||
| + | <center>  | ||
| + | {|  | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|4  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|÷  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|3  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"   | ||
| + | |width="30px" align="center"|=  | ||
| + | |}  | ||
| + | |}  | ||
| + | </center>  | ||
Current revision
The calculator does not have button for \displaystyle \log_{3}, but it does have one for the natural logarithm ln, so we need to rewrite \displaystyle \log_{3}4 in terms of ln.
If we go back to the definition of the logarithm, we see that \displaystyle \log _{3}4 is that number which satisfies
| \displaystyle 3^{\log _{3}4} = 4\,\textrm{.} | 
Now, take the natural logarithm of both sides,
| \displaystyle \ln 3^{\log _{3}4}=\ln 4\,\textrm{.} | 
Using the logarithm law, \displaystyle \lg a^b = b\lg a, the left-hand side can be written as \displaystyle \log_{3}4\cdot\ln 3 and the relation is
| \displaystyle \log_{3}4\cdot \ln 3 = \ln 4\,\textrm{.} | 
Thus, after dividing by \displaystyle \ln 3, we have
| \displaystyle \log_{3}4 = \frac{\ln 4}{\ln 3} = \frac{1\textrm{.}386294\,\ldots}{1\textrm{.}098612\,\ldots} = 1\textrm{.}2618595\,\ldots | 
which gives 1.262 as the rounded-off answer.
Note: On the calculator, the answer is obtained by pressing the buttons
  | 
  | 
  | 
  | 
  | 
  | 
