Solution 3.1:5d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 3.1:5d moved to Solution 3.1:5d: Robot: moved page)  | 
				m   | 
			||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression <math>\sqrt{17}+\sqrt{13}</math>, and use the difference of two squares  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>(a-b)(a+b) = a^2-b^2</math>}}  | 
| + | |||
| + | with <math>a=\sqrt{17}</math> and <math>b=\sqrt{13}</math>. Both roots are squared away and we get  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \frac{1}{\sqrt{17}-\sqrt{13}}  | ||
| + | &= \frac{1}{\sqrt{17}-\sqrt{13}}\cdot\frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}}\\[5pt]   | ||
| + | &= \frac{\sqrt{17}+\sqrt{13}}{(\sqrt{17})^{2}-(\sqrt{13})^{2}}\\[5pt]  | ||
| + | &= \frac{\sqrt{17}+\sqrt{13}}{17-13}\\[5pt]  | ||
| + | &= \frac{\sqrt{17}+\sqrt{13}}{4}\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | This expression cannot be simplified any further because neither 17 nor 13 contain any squares as factors.  | ||
Current revision
We can get rid of both square roots in the denominator if we multiply the top and bottom of the fraction by the conjugate expression \displaystyle \sqrt{17}+\sqrt{13}, and use the difference of two squares
| \displaystyle (a-b)(a+b) = a^2-b^2 | 
with \displaystyle a=\sqrt{17} and \displaystyle b=\sqrt{13}. Both roots are squared away and we get
| \displaystyle \begin{align}
 \frac{1}{\sqrt{17}-\sqrt{13}} &= \frac{1}{\sqrt{17}-\sqrt{13}}\cdot\frac{\sqrt{17}+\sqrt{13}}{\sqrt{17}+\sqrt{13}}\\[5pt] &= \frac{\sqrt{17}+\sqrt{13}}{(\sqrt{17})^{2}-(\sqrt{13})^{2}}\\[5pt] &= \frac{\sqrt{17}+\sqrt{13}}{17-13}\\[5pt] &= \frac{\sqrt{17}+\sqrt{13}}{4}\,\textrm{.} \end{align}  | 
This expression cannot be simplified any further because neither 17 nor 13 contain any squares as factors.
