Solution 2.3:1c
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 2.3:1c moved to Solution 2.3:1c: Robot: moved page) |
|||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | As always when completing the square, we focus on the quadratic and linear terms |
| - | < | + | <math>2x-x^{2}</math>, which we also can write as <math>-(x^{2}-2x)</math>. If we neglect the minus sign, we can complete square of the expression <math>2x-x^{2}</math> by using the formula |
| - | {{ | + | |
| + | {{Displayed math||<math>x^{2}-ax = \Bigl(x-\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2}</math>}} | ||
| + | |||
| + | and we obtain | ||
| + | |||
| + | {{Displayed math||<math>x^{2}-2x = \Bigl(x-\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x-1)^{2}-1\,\textrm{.}</math>}} | ||
| + | |||
| + | This means that | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | 5+2x-x^{2} &= 5-(x^{2}-2x) = 5-\bigl((x-1)^{2}-1\bigr)\\[5pt] | ||
| + | &= 5-(x-1)^{2}+1 = 6-(x-1)^{2}\textrm{.} | ||
| + | \end{align}</math>}} | ||
| + | |||
| + | A quick check shows that we have completed the square correctly | ||
| + | |||
| + | {{Displayed math||<math>\begin{align} | ||
| + | 6-(x-1)^{2} | ||
| + | &= 6-(x^{2}-2x+1)\\[5pt] | ||
| + | &= 6-x^{2}+2x-1\\[5pt] | ||
| + | & =5+2x-x^{2}\textrm{.} | ||
| + | \end{align}</math>}} | ||
Current revision
As always when completing the square, we focus on the quadratic and linear terms \displaystyle 2x-x^{2}, which we also can write as \displaystyle -(x^{2}-2x). If we neglect the minus sign, we can complete square of the expression \displaystyle 2x-x^{2} by using the formula
| \displaystyle x^{2}-ax = \Bigl(x-\frac{a}{2}\Bigr)^{2} - \Bigl(\frac{a}{2}\Bigr)^{2} |
and we obtain
| \displaystyle x^{2}-2x = \Bigl(x-\frac{2}{2}\Bigr)^{2} - \Bigl(\frac{2}{2}\Bigr)^{2} = (x-1)^{2}-1\,\textrm{.} |
This means that
| \displaystyle \begin{align}
5+2x-x^{2} &= 5-(x^{2}-2x) = 5-\bigl((x-1)^{2}-1\bigr)\\[5pt] &= 5-(x-1)^{2}+1 = 6-(x-1)^{2}\textrm{.} \end{align} |
A quick check shows that we have completed the square correctly
| \displaystyle \begin{align}
6-(x-1)^{2} &= 6-(x^{2}-2x+1)\\[5pt] &= 6-x^{2}+2x-1\\[5pt] & =5+2x-x^{2}\textrm{.} \end{align} |
