Solution 2.3:10d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 2.3:10d moved to Solution 2.3:10d: Robot: moved page)  | 
				m   | 
			||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {  | + | We can rewrite the double inequality <math>x^2\le y\le x</math> as <math>x^2\le y</math> and <math>y\le x\,</math>. These two inequalities define the region above the parabola <math>y=x^2</math> and the region below the line <math>y=x</math>.  | 
| - | + | ||
| - | + | ||
| - | [[Image:2_3_10_d1.gif|center]]  | + | {| align="center"  | 
| - | [[Image:2_3_10_d2.gif|center]]  | + | |align="center"|[[Image:2_3_10_d1-1.gif|center]]  | 
| + | |width="10px"|   | ||
| + | |align="center"|[[Image:2_3_10_d1-2.gif|center]]  | ||
| + | |-  | ||
| + | |align="center"|<small>The region ''x''² ≤ ''y''</small>  | ||
| + | ||  | ||
| + | |align="center"|<small>The region ''y'' ≤ ''x''</small>  | ||
| + | |}  | ||
| + | |||
| + | |||
| + | The region which the inequalities both define is the region in the first quadrant that is bordered below by the parabola and above by the line.  | ||
| + | |||
| + | |||
| + | {| align="center"  | ||
| + | |align="center"|[[Image:2_3_10_d2.gif|center]]  | ||
| + | |-  | ||
| + | |align="center"|<small>The region ''x''² ≤ y ≤ x</small>  | ||
| + | |}  | ||
Current revision
We can rewrite the double inequality \displaystyle x^2\le y\le x as \displaystyle x^2\le y and \displaystyle y\le x\,. These two inequalities define the region above the parabola \displaystyle y=x^2 and the region below the line \displaystyle y=x.
| The region x² ≤ y | The region y ≤ x | 
The region which the inequalities both define is the region in the first quadrant that is bordered below by the parabola and above by the line.
| The region x² ≤ y ≤ x | 



