Solution 2.3:10a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Lösning 2.3:10a moved to Solution 2.3:10a: Robot: moved page)  | 
				m   | 
			||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | Individually, the inequalities <math>y\ge x^{2}</math> and <math>y\le 1</math> define the region above the parabola <math>y=x^{2}</math> and under the line <math>y=1</math>, respectively.   | 
| - | <  | + | |
| - | + | {| align="center"  | |
| - | [[Image:2_3_10_a.gif|center]]  | + | |align="center"|[[Image:2_3_10_a-1.gif|center]]  | 
| + | |width="10px"|   | ||
| + | |align="center"|[[Image:2_3_10_a-2.gif|center]]  | ||
| + | |-  | ||
| + | |align="center"|<small>The region ''y'' ≥ ''x''²</small>  | ||
| + | ||  | ||
| + | |align="center"|<small>The region ''y'' ≤ 1</small>  | ||
| + | |}  | ||
| + | |||
| + | Those points which satisfy both inequalities lie in the region above the parabola, but below the line <math>y=1\,</math>.  | ||
| + | |||
| + | |||
[[Image:2_3_10_a2.gif|center]]  | [[Image:2_3_10_a2.gif|center]]  | ||
Current revision
Individually, the inequalities \displaystyle y\ge x^{2} and \displaystyle y\le 1 define the region above the parabola \displaystyle y=x^{2} and under the line \displaystyle y=1, respectively.
| The region y ≥ x² | The region y ≤ 1 | 
Those points which satisfy both inequalities lie in the region above the parabola, but below the line \displaystyle y=1\,.



