Solution 3.3:4b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Robot: Automated text replacement  (-[[Bild: +[[Image:))  | 
				m   | 
			||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | + | The two terms can be combined into one logarithmic expression using the log law  | |
| - | <  | + | <math>\lg a + \lg b = \lg (ab)</math>,  | 
| - | {{  | + | |
| + | {{Displayed math||<math>\lg 23 + \lg\frac{1}{23} = \lg \Bigl(23\cdot\frac{1}{23}\Bigr) = \lg 1 = 0\,\textrm{.}</math>}}  | ||
Current revision
The two terms can be combined into one logarithmic expression using the log law \displaystyle \lg a + \lg b = \lg (ab),
| \displaystyle \lg 23 + \lg\frac{1}{23} = \lg \Bigl(23\cdot\frac{1}{23}\Bigr) = \lg 1 = 0\,\textrm{.} | 
