Solution 3.3:2h
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Robot: Automated text replacement  (-[[Bild: +[[Image:))  | 
				m   | 
			||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | The argument in the logarithm can be rewritten as <math>\frac{1}{10^{2}} = 10^{-2}</math> and then the log law <math>\lg a^b = b\lg a</math> gives the rest  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\lg \frac{1}{10^2} = \lg 10^{-2} = (-2)\cdot \lg 10 = (-2)\cdot 1 = -2\,\textrm{.}</math>}}  | 
Current revision
The argument in the logarithm can be rewritten as \displaystyle \frac{1}{10^{2}} = 10^{-2} and then the log law \displaystyle \lg a^b = b\lg a gives the rest
| \displaystyle \lg \frac{1}{10^2} = \lg 10^{-2} = (-2)\cdot \lg 10 = (-2)\cdot 1 = -2\,\textrm{.} | 
