Solution 1.3:6f
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m  (Robot: Automated text replacement  (-[[Bild: +[[Image:))  | 
				m   | 
			||
| (2 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | We can factorize the exponents 40 and 56 as  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\begin{align}  | 
| + | 40 &= 4\cdot 10 = 2\cdot 2\cdot 2\cdot 5 = 2^{3}\cdot 5 \\[3pt]   | ||
| + | 56 &= 7\cdot 8 = 7\cdot 2\cdot 4 = 7\cdot 2\cdot 2\cdot 2 = 2^{3}\cdot 7   | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | and we then see that they have <math>2^{3} = 8</math> as a common factor. We can take this factor out as an "outer" exponent  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | 3^{40} &= 3^{5\cdot 8} = \bigl(3^{5}\bigr)^{8} = (3\cdot 3\cdot 3\cdot 3\cdot 3)^{8} = 243^{8}\,,\\[3pt]  | ||
| + | 2^{56} &= 2^{7\cdot 8} = \bigl(2^{7}\bigr)^{8} = (2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)^{8} = 128^{8}\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | This shows that <math>3^{40} = 243^{8}</math> is bigger than <math>2^{56} = 128^{8}</math>.  | ||
Current revision
We can factorize the exponents 40 and 56 as
| \displaystyle \begin{align}
 40 &= 4\cdot 10 = 2\cdot 2\cdot 2\cdot 5 = 2^{3}\cdot 5 \\[3pt] 56 &= 7\cdot 8 = 7\cdot 2\cdot 4 = 7\cdot 2\cdot 2\cdot 2 = 2^{3}\cdot 7 \end{align}  | 
and we then see that they have \displaystyle 2^{3} = 8 as a common factor. We can take this factor out as an "outer" exponent
| \displaystyle \begin{align}
 3^{40} &= 3^{5\cdot 8} = \bigl(3^{5}\bigr)^{8} = (3\cdot 3\cdot 3\cdot 3\cdot 3)^{8} = 243^{8}\,,\\[3pt] 2^{56} &= 2^{7\cdot 8} = \bigl(2^{7}\bigr)^{8} = (2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2)^{8} = 128^{8}\,\textrm{.} \end{align}  | 
This shows that \displaystyle 3^{40} = 243^{8} is bigger than \displaystyle 2^{56} = 128^{8}.
