4.2 Trigonometric functions
From Förberedande kurs i matematik 1
(Ny sida: __NOTOC__ {{Info| '''Innehåll:''' *De trigonometriska funktionerna cosinus, sinus och tangens. }} {{Info| '''Lärandemål:''' Efter detta avsnitt ska du ha lärt dig att: *Känna till be...) |
m |
||
(48 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
+ | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
+ | | style="border-bottom:1px solid #797979" width="5px" | | ||
+ | {{Selected tab|[[4.2 Trigonometric functions|Theory]]}} | ||
+ | {{Not selected tab|[[4.2 Exercises|Exercises]]}} | ||
+ | | style="border-bottom:1px solid #797979" width="100%"| | ||
+ | |} | ||
+ | |||
{{Info| | {{Info| | ||
- | ''' | + | '''Contents:''' |
- | * | + | *The trigonometric functions cosine, sine and tangent. |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section, you will have learned: | |
- | * | + | *The definition of acute, obtuse and right angles. |
- | * | + | *The definition of cosine, sine and tangent. |
- | * | + | *The values of cosine, sine and tangent for the standard angles <math>0</math>, <math>\pi/6</math> , <math>\pi/4</math> , <math>\pi/3</math> and <math>\pi/2</math> by heart. |
- | * | + | *To determine the values of cosine, sine and tangent of arguments that can be reduced to a standard angle. |
- | * | + | * To sketch graphs of cosine, sine and tangent. |
- | * | + | *To solve trigonometric problems involving right-angled triangles. |
}} | }} | ||
- | == | + | == Trigonometry of right-angled triangles == |
- | + | In the right-angled triangle below, the ratio between the length <math>a</math> of the side opposite the angle and the length <math>b</math> of the adjacent side is called the tangent of the angle <math>u</math>, and is written as <math>\tan u</math>. | |
<center> | <center> | ||
Line 25: | Line 32: | ||
|- | |- | ||
| valign="center" | | | valign="center" | | ||
- | {{:4.2 - | + | {{:4.2 - Figure - A right-angled triangle with angle u and legs a and b}} |
+ | | width="30px" | | ||
| valign="center" | | | valign="center" | | ||
<math>\tan u = \displaystyle \frac{a}{b}</math> | <math>\tan u = \displaystyle \frac{a}{b}</math> | ||
Line 31: | Line 39: | ||
</center> | </center> | ||
- | + | The value of the ratio <math>\frac{a}{b}</math> is not dependent on the size of the triangle, but only on the angle <math>u</math>. For different values of the angle, you can get the value of the tangent either from a trigonometric table or by using a calculator (the relevant button is usually named tan). | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
- | + | How high is the flagpole? | |
- | <center>{{:4.2 - | + | <center>{{:4.2 - Figure - Flagpole}}</center> |
- | + | The flagpole and its shadow form a right-angled triangle where the vertical side is unknown (marked with <math>x</math> below). | |
- | <center>{{:4.2 - | + | <center>{{:4.2 - Figure - Flagpole triangle}}</center> |
- | + | From the definition of tangent, we have that | |
- | {{ | + | {{Displayed math||<math>\tan 40^\circ = \frac{x}{5 \mbox{ m }}</math>}} |
- | + | and since <math>\tan 40^\circ \approx 0\textrm{.}84</math> we get | |
- | {{ | + | {{Displayed math||<math> |
- | x = 5\,\mbox{m} \ | + | x = 5\,\mbox{m} \times \tan 40^\circ \approx 5\,\mbox{m} \times 0\textrm{.}84 |
- | = 4{ | + | = 4\textrm{.}2\,\mbox{m}\,\mbox{.}</math>}} |
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
- | + | Determine the length of the side designated with the <math>x</math> in the figure. | |
- | <center>{{:4.2 - | + | <center>{{:4.2 - Figure - A double triangle}}</center> |
- | + | If we call the angle at the far left <math>u</math> there are two ways to construct an expression for <math>\tan u</math>. | |
- | {| | + | {| align="center" |
|- | |- | ||
| width="5%" | | | width="5%" | | ||
| valign="center" align="left" | | | valign="center" align="left" | | ||
- | {{:4.2 - | + | {{:4.2 - Figure - A double triangle with the small triangle highlighted}} |
| width="10%" | | | width="10%" | | ||
| width="85%" valign="center" align="left" | | | width="85%" valign="center" align="left" | | ||
Line 73: | Line 81: | ||
|} | |} | ||
- | {| | + | {| align="center" |
|- | |- | ||
| width="5%" | | | width="5%" | | ||
| valign="centger" align="left" | | | valign="centger" align="left" | | ||
- | {{:4.2 - | + | {{:4.2 - Figure - A double triangle with the larger triangle highlighted}} |
| width="10%" | | | width="10%" | | ||
| width="85%" valign="center" align="left" | | | width="85%" valign="center" align="left" | | ||
Line 83: | Line 91: | ||
|} | |} | ||
- | + | Equality of the two expressions for <math>\tan u</math> gives | |
- | {{ | + | {{Displayed math||<math>\frac{22}{40} = \frac{x}{60}</math>}} |
- | + | which leads to <math>x=60 \times \displaystyle \frac{22}{40} = 33</math>. | |
</div> | </div> | ||
- | + | There are two other ratios in right-angled triangles that have special names. The first is <math>\cos u = b/c</math> ("cosine of <math>u</math>") and the second is <math>\sin u = a/c</math> (" sine of <math>u</math>"). | |
+ | <center> | ||
{| | {| | ||
|- | |- | ||
| valign="center" | | | valign="center" | | ||
- | {{:4.2 - | + | {{:4.2 - Figure - A right-angled triangle with angle u and sides a, b and c}} |
- | | width=" | + | | width="30px" | |
| valign="center" | | | valign="center" | | ||
<math>\begin{align*} | <math>\begin{align*} | ||
Line 102: | Line 111: | ||
\end{align*}</math> | \end{align*}</math> | ||
|} | |} | ||
- | + | </center> | |
- | + | Like the tangent the ratios that define the cosine and sine do not depend on the size of the triangle, but only on the angle <math>u</math>. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
{| width="100%" | {| width="100%" | ||
Line 114: | Line 123: | ||
<li></li> | <li></li> | ||
</ol> | </ol> | ||
+ | | width="5%" | | ||
|align="left" valign="top"| | |align="left" valign="top"| | ||
- | {{:4.2 - | + | {{:4.2 - Figure - A right-angled triangle with angle u and sides 3, 4 and 5}} |
- | |width=" | + | | width="10%" | |
- | + | | width="85%" align="left" valign="top" | | |
- | {{ | + | In the triangle on the left |
+ | {{Displayed math||<math>\begin{align*} | ||
\cos u &= \tfrac{4}{5}\\[6pt] | \cos u &= \tfrac{4}{5}\\[6pt] | ||
\sin u &= \tfrac{3}{5} | \sin u &= \tfrac{3}{5} | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
+ | |- | ||
+ | | height="10px" | | ||
|- | |- | ||
|valign="top"| | |valign="top"| | ||
Line 127: | Line 140: | ||
<li></li> | <li></li> | ||
</ol> | </ol> | ||
+ | | width="5%" | | ||
|align="left" valign="top"| | |align="left" valign="top"| | ||
- | {{:4.2 - | + | {{:4.2 - Figure - A right-angled triangle with angle 38° and sides x and 5}} |
- | |width=" | + | | width="10%" | |
- | + | | width="85%" align="left" valign="top" | | |
- | {{ | + | From the definition of sine we have |
- | + | {{Displayed math||<math>\sin 38^\circ = \frac{x}{5}</math>,}} | |
- | {{ | + | and if we know that <math>\sin 38^\circ \approx 0\textrm{.}616</math> then |
+ | {{Displayed math||<math>x = 5 \times \sin 38^\circ \approx 5 \times 0\textrm{.}616 \approx 3\textrm{.}1\,\mbox{.}</math>}} | ||
+ | |- | ||
+ | | height="10px" | | ||
|- | |- | ||
|valign="top"| | |valign="top"| | ||
Line 139: | Line 156: | ||
<li></li> | <li></li> | ||
</ol> | </ol> | ||
+ | | width="5%" | | ||
|align="left" valign="top"| | |align="left" valign="top"| | ||
- | {{:4.2 - | + | {{:4.2 - Figure - A right-angled triangle with angle 34° and sides 3 and x}} |
- | |width=" | + | | width="10%" | |
- | + | | width="85%" align="left" valign="top" | | |
- | {{ | + | Cosine is the ratio between the adjacent side and the hypotenuse, so |
- | + | {{Displayed math||<math>\cos 34^\circ = \frac{3}{x}\,\mbox{.}</math>}} | |
- | {{ | + | Thus |
+ | {{Displayed math||<math>x=\frac{3}{\cos 34^\circ}\,\mbox{.}</math>}} | ||
|} | |} | ||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 4''' |
- | + | Determine <math>\sin u</math> in the triangle | |
- | <center>{{:4.2 - | + | <center>{{:4.2 - Figure - A right-angled triangle with angle u and sides ½ and 1}}</center> |
- | + | With the help of Pythagoras' theorem the side on the right can be determined: | |
+ | <center> | ||
{| | {| | ||
|- | |- | ||
| valign="center" | | | valign="center" | | ||
- | {{:4.2 - | + | {{:4.2 - Figure - A right-angled triangle with angle u and sides ½, x and 1}} |
- | | width=" | + | | width="30px" | |
| align="left" valign="center" | | | align="left" valign="center" | | ||
<math>1^2= \bigl( \tfrac{1}{2} \bigr)^2 + x^2 \quad\Leftrightarrow\quad x = \frac{\sqrt{3}}{2}</math> | <math>1^2= \bigl( \tfrac{1}{2} \bigr)^2 + x^2 \quad\Leftrightarrow\quad x = \frac{\sqrt{3}}{2}</math> | ||
|} | |} | ||
+ | </center> | ||
- | + | and thus <math>\sin u = \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}</math>. | |
</div> | </div> | ||
- | == | + | == Some standard angles == |
- | + | For some angles, namely 30°, 45° and 60°, it is relatively easy to calculate the exact values of the trigonometric functions. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
- | + | We start with a square having sides of length 1. A diagonal of the square divides the right angles in opposite corners into two equal parts of 45°. | |
- | <center>{{:4.2 - Figur - Två enhetskvadrater}}</center> | ||
- | + | <center>{{:4.2 - Figure - Two unit squares}}</center> | |
- | {{ | + | |
+ | |||
+ | Using Pythagoras' theorem, we can determine the length <math>x</math> of the diagonal: | ||
+ | {{Displayed math||<math> | ||
x^2 = 1^2 + 1^2 | x^2 = 1^2 + 1^2 | ||
\quad \Leftrightarrow \quad | \quad \Leftrightarrow \quad | ||
x = \sqrt{1^2 + 1^2} = \sqrt{2}\,\mbox{.}</math>}} | x = \sqrt{1^2 + 1^2} = \sqrt{2}\,\mbox{.}</math>}} | ||
- | + | Each triangle has the diagonal as the hypotenuse. Thus we can obtain the value of the trigonometric functions for the angle <math>45^\circ</math>: | |
+ | |||
+ | <center> | ||
{| | {| | ||
|- | |- | ||
| valign="center" | | | valign="center" | | ||
- | {{:4.2 - | + | {{:4.2 - Figure - The unit square and half of it as a right-angled triangle}} |
- | | width=" | + | | width="30px" | |
| align="left" valign="center" | | | align="left" valign="center" | | ||
<math>\begin{align*} | <math>\begin{align*} | ||
Line 202: | Line 227: | ||
\end{align*}</math> | \end{align*}</math> | ||
|} | |} | ||
+ | </center> | ||
+ | |||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
- | + | Imagine an equilateral triangle where all sides have length 1. The angles of the triangle are all 60°. The triangle can be divided into two halves by a line that divides the angle at the top in equal parts. | |
- | <center>{{:4.2 - Figur - Två liksidiga trianglar}}</center> | ||
- | + | <center>{{:4.2 - Figure - Two equilateral triangles}}</center> | |
+ | |||
+ | The Pythagorean theorem allows us to calculate that the length of the vertical side of half-triangle is <math>x=\sqrt{3}/2</math>. Using the definitions we then get that | ||
+ | |||
+ | |||
+ | <center> | ||
{| | {| | ||
|- | |- | ||
| valign="center" | | | valign="center" | | ||
- | {{:4.2 - | + | {{:4.2 - Figure - A half of an equilateral triangle}} |
| width="20px" | | | width="20px" | | ||
| align="left" valign="center" | | | align="left" valign="center" | | ||
<math>\begin{align*} | <math>\begin{align*} | ||
- | \cos 30^\circ &= \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}\, | + | \cos 30^\circ &= \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}\,\\[8pt] |
- | \sin 30^\circ &= \frac{1/2}{1} = \frac{1}{2}\, | + | \sin 30^\circ &= \frac{1/2}{1} = \frac{1}{2}\,\\[8pt] |
- | \tan 30^\circ &= \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}\, | + | \tan 30^\circ &= \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}\,\\ |
\end{align*} | \end{align*} | ||
\qquad\quad | \qquad\quad | ||
Line 231: | Line 262: | ||
\end{align*}</math> | \end{align*}</math> | ||
|} | |} | ||
+ | </center> | ||
+ | |||
</div> | </div> | ||
- | == | + | == Trigonometric functions for general angles == |
- | + | For angles less than 0° or greater than 90° the trigonometric functions are defined using the unit circle (that is the circle that has its centre at the origin and has radius 1). | |
<div class="regel"> | <div class="regel"> | ||
{| width="100%" | {| width="100%" | ||
|- | |- | ||
- | | width=" | + | | width="90%" valign="center"| |
- | + | The trigonometric functions <math>\cos u</math> and <math>\sin u</math> are the ''x''- and ''y''- coordinates of the point on the unit circle reached by turning through the angle <math>u</math>, as shown in the diagram on the right. | |
+ | | width="10%" | | ||
| align="right" valign="center" | | | align="right" valign="center" | | ||
- | {{:4.2 - | + | {{:4.2 - Figure - The unit circle with angle u and the point (cos u, sin u)}} |
|} | |} | ||
</div> | </div> | ||
- | + | The tangent function is then defined as | |
- | {{ | + | {{Displayed math||<math>\tan u = \displaystyle\frac{\sin u}{\cos u}</math>}} |
- | + | and the value of the tangent can be interpreted as the gradient of the radius. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
- | + | From the figures below, we obtain the values of cosine and sine. | |
{| width="100%" | {| width="100%" | ||
Line 266: | Line 300: | ||
<li></li> | <li></li> | ||
</ol> | </ol> | ||
- | |align=" | + | |align="right" valign="center"| |
- | {{:4.2 - | + | {{:4.2 - Figure - The unit circle with the angle 104° and the point (-0.24,0.97)}} |
| width="10%" | | | width="10%" | | ||
| width="90%" align="left" valign="center" | | | width="90%" align="left" valign="center" | | ||
<math>\begin{align*} | <math>\begin{align*} | ||
- | \cos 104^\circ &\approx -0{ | + | \cos 104^\circ &\approx -0\mbox{.}24\\[8pt] |
- | \sin 104^\circ &\approx 0{ | + | \sin 104^\circ &\approx 0\mbox{.}97\\[8pt] |
- | \tan 104^\circ &\approx \dfrac{0{ | + | \tan 104^\circ &\approx \dfrac{0\mbox{.}97}{-0\mbox{.}24} \approx -4\mbox{.}0\\ |
\end{align*}</math> | \end{align*}</math> | ||
|- | |- | ||
Line 280: | Line 314: | ||
<li></li> | <li></li> | ||
</ol> | </ol> | ||
- | |align=" | + | |align="right" valign="center"| |
- | {{:4.2 - | + | {{:4.2 - Figure - The unit circle with angle 201° and the point (-0.93,-0.36)}} |
| width="10%" | | | width="10%" | | ||
| width="90%" align="left" valign="center" | | | width="90%" align="left" valign="center" | | ||
<math>\begin{align*} | <math>\begin{align*} | ||
- | \cos 201^\circ &\approx -0{ | + | \cos 201^\circ &\approx -0\mbox{.}93\\[8pt] |
- | \sin 201^\circ &\approx -0{ | + | \sin 201^\circ &\approx -0\mbox{.}36\\[8pt] |
- | \tan 201^\circ &\approx \dfrac{-0{ | + | \tan 201^\circ &\approx \dfrac{-0\mbox{.}36}{-0\mbox{.}93} \approx 0\mbox{.}4\\ |
\end{align*}</math> | \end{align*}</math> | ||
|} | |} | ||
Line 293: | Line 327: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
- | + | Which sign do the following have? | |
{| width="100%" | {| width="100%" | ||
|- | |- | ||
- | |width=" | + | |width="95%"| |
<ol type="a"> | <ol type="a"> | ||
<li><math>\cos 209^\circ</math> | <li><math>\cos 209^\circ</math> | ||
<br> | <br> | ||
<br> | <br> | ||
- | + | Since the angle <math>209^\circ</math> can be written as <math>209^\circ = 180^\circ + 29^\circ</math> the angle corresponds to a point on the unit circle which lies in the third quadrant. The point has a negative ''x''-coordinate, which means that <math>\cos 209^\circ</math> is negative .</li> | |
</ol> | </ol> | ||
- | |align="right"| | + | | width="5%" | |
- | {{:4.2 - | + | | align="right" | |
+ | {{:4.2 - Figure - The unit circle with angle 209° and the line x = cos 209°}} | ||
|- | |- | ||
- | |width=" | + | | width="95%" | |
<ol type="a" start="2"> | <ol type="a" start="2"> | ||
<li><math>\sin 133^\circ</math> | <li><math>\sin 133^\circ</math> | ||
<br> | <br> | ||
<br> | <br> | ||
- | + | The angle <math>133^\circ</math> is equal to <math>90^\circ + 43^\circ</math> and gives a point on the unit circle which lies in the second quadrant. The quadrant has points with positive ''y''-coordinate, and therefore <math>\sin 133^\circ</math> is positive.</li> | |
</ol> | </ol> | ||
- | |align="right"| | + | | width="5%" | |
- | {{:4.2 - | + | | align="right" | |
+ | {{:4.2 - Figure - The unit circle with the angle 133° and the line y = sin 133°}} | ||
|- | |- | ||
- | |width=" | + | | width="95%" | |
<ol type="a" start="3"> | <ol type="a" start="3"> | ||
<li><math>\tan (-40^\circ)</math> | <li><math>\tan (-40^\circ)</math> | ||
<br> | <br> | ||
<br> | <br> | ||
- | + | By drawing angle <math>-40^\circ</math> in the unit circle one obtains a radial line which has a negative slope, so that <math>\tan (-40^\circ)</math> is negative. </li> | |
</ol> | </ol> | ||
- | |align="right"| | + | | width="5%" | |
- | {{:4.2 - | + | | align="right" | |
+ | {{:4.2 - Figure - The unit circle with the angle -40° and the line with slope tan -40°}} | ||
|} | |} | ||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 9''' |
- | + | Calculate <math>\,\sin\frac{2\pi}{3}</math>. | |
<br> | <br> | ||
<br> | <br> | ||
- | + | Note that | |
- | {{ | + | {{Displayed math||<math> |
\frac{2\pi}{3} = \frac{4\pi}{6} | \frac{2\pi}{3} = \frac{4\pi}{6} | ||
= \frac{3\pi+ \pi}{6} | = \frac{3\pi+ \pi}{6} | ||
- | = \frac{\pi}{2} + \frac{\pi}{6}</math>}} | + | = \frac{\pi}{2} + \frac{\pi}{6}</math>.}} |
- | + | This shows that the point on the unit circle corresponding to the angle <math>2\pi/3</math> is in the the second quadrant and makes the angle <math>\pi/6</math> with the positive ''y''-axis. If we draw an extra triangle as in the figure below on the right, we see that the <math>2\pi/3</math>- point on the unit circle has a ''y''-coordinate which is equal to the adjacent side <math>\cos \frac{\pi}{6} = \sqrt{3}/2</math>. So we have that | |
- | {{ | + | {{Displayed math||<math> |
\sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}\,\mbox{.}</math>}} | \sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}\,\mbox{.}</math>}} | ||
- | <center>{{:4.2 - | + | <center>{{:4.2 - Figure - Two unit circles with angle 2π/3 (angle π/6 with the y-axis)}}</center> |
</div> | </div> | ||
- | == | + | == Graphs of the trigonometric functions == |
- | + | In the last section we used a unit circle to define the cosine and sine of arbitrary angles, and we will often use the unit circle in the future, for example, to derive trigonometric relationships and solve trigonometric equations. However, there are certain characteristics of the trigonometric functions that are better illustrated by drawing their graphs. | |
- | <center>{{:4.2 - Figur - Sinuskurva}}</center> | ||
- | <center><small>Grafen till sinusfunktionen</small></center> | ||
- | <center>{{:4.2 - | + | <center>{{:4.2 - Figure - A sine curve}}</center> |
- | <center><small> | + | <center><small>The graph of the sine function </small></center> |
- | <center>{{:4.2 - | + | <center>{{:4.2 - Figure - A cosine curve}}</center> |
- | <center><small> | + | <center><small>The graph of the cosine function </small></center> |
- | + | <center>{{:4.2 - Figure - A tangent curve}}</center> | |
+ | <center><small>The graph of the tangent function </small></center> | ||
- | *Kurvorna för cosinus och sinus upprepar sig efter en vinkeländring på <math>2\pi</math>, dvs. det gäller att <math>\cos (x+2\pi) = \cos x</math> och <math>\sin (x+2\pi) = \sin x</math>. I enhetscirkeln motsvarar <math>2\pi</math> ett varv och efter ett helt varv återkommer vinklar till samma läge på enhetscirkeln och har därför samma koordinater. | ||
- | + | In these graphs, we might observe several things more clearly than in the unit circle. Some examples are: | |
- | * | + | * The curves for cosine and sine repeat themselves after a change in angle of <math>2\pi</math>, that is <math>\cos (x+2\pi) = \cos x</math> and <math>\sin (x+2\pi) = \sin x</math>. To see why this is true, note that on the unit circle <math>2\pi</math> corresponds to a complete revolution, and after a complete revolution we return to the same point on the circle. |
+ | *The curve for the tangent repeats itself after a change in angle of <math>\pi</math>, that is <math>\tan (x+\pi) = \tan x</math>. Two angles which differ by <math>\pi</math> share the same line through the origin of the unit circle and thus their radial lines have the same slope. | ||
- | + | *Except for a phase shift of <math>\pi/2</math> the curves for cosine and sine are identical, that is <math>\cos x = \sin (x+ \pi/2)</math>; more about this in the next section. | |
+ | |||
+ | |||
+ | The curves can also be important when examining trigonometric equations. With a simple sketch, you can often get an idea of how many solutions an equation has, and where the solutions lie. | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 10''' |
- | + | How many solutions has the equation <math>\cos x = x^2</math> ( where <math>x</math> is measured in radians)? | |
<br> | <br> | ||
<br> | <br> | ||
- | + | By drawing the graphs <math>y=\cos x</math> and <math>y=x^2</math> we see that the curves intersect in two points. So there are two ''x''-values for which the corresponding ''y''-values are equal. In other words, the equation has two solutions. | |
- | <center>{{:4.2 - | + | <center>{{:4.2 - Figure - The curves y = cos x and y = x²}}</center> |
</div> | </div> | ||
- | [[4.2 | + | [[4.2 Exercises|Exercises]] |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | <div class="inforuta" style="width:580px;"> | |
+ | '''Study advice''' | ||
+ | '''Basic and final tests''' | ||
- | + | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | |
- | Har du läst trigonometri, så ska du inte vara rädd för att använda den i geometriska problem. Det ger ofta en enklare lösning. | ||
- | + | '''Keep in mind that...''' | |
- | + | If you have studied trigonometry, then you should not be afraid to use it in geometric problems. It often produces a simpler solution. | |
+ | You may need to spend a lot of time understanding how to use a unit circle to define the trigonometric functions. | ||
- | + | You should get into the habit of calculating with precise trigonometric values. It is good training in calculating fractions and will eventually help you handle algebraic rational expressions. | |
- | + | '''Reviews''' | |
- | + | For those of you who want to deepen your understanding or need more detailed explanations consider the following references: | |
- | [http://en.wikipedia.org/wiki/Trigonometric_function | + | [http://en.wikipedia.org/wiki/Trigonometric_function Learn more about trigonometry from Wikipedia] |
- | [http://en.wikipedia.org/wiki/Unit_circle | + | [http://en.wikipedia.org/wiki/Unit_circle Learn more about the unit circle from Wikipedia] |
- | ''' | + | '''Useful web sites''' |
- | [http://www.math.kth.se/online/images/sinus_och_cosinus_i_enhetscirkeln.swf | + | [http://www.math.kth.se/online/images/sinus_och_cosinus_i_enhetscirkeln.swf Experiment with the sine and cosine functions] |
- | [http://www.math.psu.edu/dlittle/java/geometry/euclidean/toolbox.html | + | [http://www.math.psu.edu/dlittle/java/geometry/euclidean/toolbox.html Experiment with Euclidean geometry] |
</div> | </div> |
Current revision
Theory | Exercises |
Contents:
- The trigonometric functions cosine, sine and tangent.
Learning outcomes:
After this section, you will have learned:
- The definition of acute, obtuse and right angles.
- The definition of cosine, sine and tangent.
- The values of cosine, sine and tangent for the standard angles \displaystyle 0, \displaystyle \pi/6 , \displaystyle \pi/4 , \displaystyle \pi/3 and \displaystyle \pi/2 by heart.
- To determine the values of cosine, sine and tangent of arguments that can be reduced to a standard angle.
- To sketch graphs of cosine, sine and tangent.
- To solve trigonometric problems involving right-angled triangles.
Trigonometry of right-angled triangles
In the right-angled triangle below, the ratio between the length \displaystyle a of the side opposite the angle and the length \displaystyle b of the adjacent side is called the tangent of the angle \displaystyle u, and is written as \displaystyle \tan u.
|
\displaystyle \tan u = \displaystyle \frac{a}{b} |
The value of the ratio \displaystyle \frac{a}{b} is not dependent on the size of the triangle, but only on the angle \displaystyle u. For different values of the angle, you can get the value of the tangent either from a trigonometric table or by using a calculator (the relevant button is usually named tan).
Example 1
How high is the flagpole?
The flagpole and its shadow form a right-angled triangle where the vertical side is unknown (marked with \displaystyle x below).
From the definition of tangent, we have that
\displaystyle \tan 40^\circ = \frac{x}{5 \mbox{ m }} |
and since \displaystyle \tan 40^\circ \approx 0\textrm{.}84 we get
\displaystyle
x = 5\,\mbox{m} \times \tan 40^\circ \approx 5\,\mbox{m} \times 0\textrm{.}84 = 4\textrm{.}2\,\mbox{m}\,\mbox{.} |
Example 2
Determine the length of the side designated with the \displaystyle x in the figure.
If we call the angle at the far left \displaystyle u there are two ways to construct an expression for \displaystyle \tan u.
|
\displaystyle \tan u = \displaystyle \frac{22}{40} |
|
\displaystyle \tan u = \dfrac{x}{60} |
Equality of the two expressions for \displaystyle \tan u gives
\displaystyle \frac{22}{40} = \frac{x}{60} |
which leads to \displaystyle x=60 \times \displaystyle \frac{22}{40} = 33.
There are two other ratios in right-angled triangles that have special names. The first is \displaystyle \cos u = b/c ("cosine of \displaystyle u") and the second is \displaystyle \sin u = a/c (" sine of \displaystyle u").
|
\displaystyle \begin{align*} \cos u &= \frac{b}{c}\\[8pt] \sin u &= \frac{a}{c} \end{align*} |
Like the tangent the ratios that define the cosine and sine do not depend on the size of the triangle, but only on the angle \displaystyle u.
Example 3
|
|
In the triangle on the left
| ||||||||
|
|
From the definition of sine we have
and if we know that \displaystyle \sin 38^\circ \approx 0\textrm{.}616 then
| ||||||||
|
|
Cosine is the ratio between the adjacent side and the hypotenuse, so
Thus
|
Example 4
Determine \displaystyle \sin u in the triangle
With the help of Pythagoras' theorem the side on the right can be determined:
|
\displaystyle 1^2= \bigl( \tfrac{1}{2} \bigr)^2 + x^2 \quad\Leftrightarrow\quad x = \frac{\sqrt{3}}{2} |
and thus \displaystyle \sin u = \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}.
Some standard angles
For some angles, namely 30°, 45° and 60°, it is relatively easy to calculate the exact values of the trigonometric functions.
Example 5
We start with a square having sides of length 1. A diagonal of the square divides the right angles in opposite corners into two equal parts of 45°.
Using Pythagoras' theorem, we can determine the length \displaystyle x of the diagonal:
\displaystyle
x^2 = 1^2 + 1^2 \quad \Leftrightarrow \quad x = \sqrt{1^2 + 1^2} = \sqrt{2}\,\mbox{.} |
Each triangle has the diagonal as the hypotenuse. Thus we can obtain the value of the trigonometric functions for the angle \displaystyle 45^\circ:
|
\displaystyle \begin{align*} \cos 45^\circ &= \frac{1}{\sqrt{2}}\\[8pt] \sin 45^\circ &= \frac{1}{\sqrt{2}}\\[8pt] \tan 45^\circ &= \frac{1}{1}= 1\\ \end{align*} |
Example 6
Imagine an equilateral triangle where all sides have length 1. The angles of the triangle are all 60°. The triangle can be divided into two halves by a line that divides the angle at the top in equal parts.
The Pythagorean theorem allows us to calculate that the length of the vertical side of half-triangle is \displaystyle x=\sqrt{3}/2. Using the definitions we then get that
|
\displaystyle \begin{align*} \cos 30^\circ &= \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}\,\\[8pt] \sin 30^\circ &= \frac{1/2}{1} = \frac{1}{2}\,\\[8pt] \tan 30^\circ &= \frac{1/2}{\sqrt{3}/2} = \frac{1}{\sqrt{3}}\,\\ \end{align*} \qquad\quad \begin{align*} \cos 60^\circ &= \frac{1/2}{1} = \frac{1}{2}\\[8pt] \sin 60^\circ &= \frac{\sqrt{3}/2}{1} = \frac{\sqrt{3}}{2}\\[8pt] \tan 60^\circ &= \frac{\sqrt{3}/2}{1/2}=\sqrt{3}\\ \end{align*} |
Trigonometric functions for general angles
For angles less than 0° or greater than 90° the trigonometric functions are defined using the unit circle (that is the circle that has its centre at the origin and has radius 1).
The trigonometric functions \displaystyle \cos u and \displaystyle \sin u are the x- and y- coordinates of the point on the unit circle reached by turning through the angle \displaystyle u, as shown in the diagram on the right. |
|
The tangent function is then defined as
\displaystyle \tan u = \displaystyle\frac{\sin u}{\cos u} |
and the value of the tangent can be interpreted as the gradient of the radius.
Example 7
From the figures below, we obtain the values of cosine and sine.
|
|
\displaystyle \begin{align*} \cos 104^\circ &\approx -0\mbox{.}24\\[8pt] \sin 104^\circ &\approx 0\mbox{.}97\\[8pt] \tan 104^\circ &\approx \dfrac{0\mbox{.}97}{-0\mbox{.}24} \approx -4\mbox{.}0\\ \end{align*} | |
|
|
\displaystyle \begin{align*} \cos 201^\circ &\approx -0\mbox{.}93\\[8pt] \sin 201^\circ &\approx -0\mbox{.}36\\[8pt] \tan 201^\circ &\approx \dfrac{-0\mbox{.}36}{-0\mbox{.}93} \approx 0\mbox{.}4\\ \end{align*} |
Example 8
Which sign do the following have?
|
| |
|
| |
|
|
Example 9
Calculate \displaystyle \,\sin\frac{2\pi}{3}.
Note that
\displaystyle
\frac{2\pi}{3} = \frac{4\pi}{6} = \frac{3\pi+ \pi}{6} = \frac{\pi}{2} + \frac{\pi}{6}. |
This shows that the point on the unit circle corresponding to the angle \displaystyle 2\pi/3 is in the the second quadrant and makes the angle \displaystyle \pi/6 with the positive y-axis. If we draw an extra triangle as in the figure below on the right, we see that the \displaystyle 2\pi/3- point on the unit circle has a y-coordinate which is equal to the adjacent side \displaystyle \cos \frac{\pi}{6} = \sqrt{3}/2. So we have that
\displaystyle
\sin\frac{2\pi}{3} = \frac{\sqrt{3}}{2}\,\mbox{.} |
Graphs of the trigonometric functions
In the last section we used a unit circle to define the cosine and sine of arbitrary angles, and we will often use the unit circle in the future, for example, to derive trigonometric relationships and solve trigonometric equations. However, there are certain characteristics of the trigonometric functions that are better illustrated by drawing their graphs.
In these graphs, we might observe several things more clearly than in the unit circle. Some examples are:
- The curves for cosine and sine repeat themselves after a change in angle of \displaystyle 2\pi, that is \displaystyle \cos (x+2\pi) = \cos x and \displaystyle \sin (x+2\pi) = \sin x. To see why this is true, note that on the unit circle \displaystyle 2\pi corresponds to a complete revolution, and after a complete revolution we return to the same point on the circle.
- The curve for the tangent repeats itself after a change in angle of \displaystyle \pi, that is \displaystyle \tan (x+\pi) = \tan x. Two angles which differ by \displaystyle \pi share the same line through the origin of the unit circle and thus their radial lines have the same slope.
- Except for a phase shift of \displaystyle \pi/2 the curves for cosine and sine are identical, that is \displaystyle \cos x = \sin (x+ \pi/2); more about this in the next section.
The curves can also be important when examining trigonometric equations. With a simple sketch, you can often get an idea of how many solutions an equation has, and where the solutions lie.
Example 10
How many solutions has the equation \displaystyle \cos x = x^2 ( where \displaystyle x is measured in radians)?
By drawing the graphs \displaystyle y=\cos x and \displaystyle y=x^2 we see that the curves intersect in two points. So there are two x-values for which the corresponding y-values are equal. In other words, the equation has two solutions.
Study advice
Basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that...
If you have studied trigonometry, then you should not be afraid to use it in geometric problems. It often produces a simpler solution.
You may need to spend a lot of time understanding how to use a unit circle to define the trigonometric functions.
You should get into the habit of calculating with precise trigonometric values. It is good training in calculating fractions and will eventually help you handle algebraic rational expressions.
Reviews
For those of you who want to deepen your understanding or need more detailed explanations consider the following references:
Learn more about trigonometry from Wikipedia
Learn more about the unit circle from Wikipedia
Useful web sites