Solution 4.3:6b
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | + | We draw an angle <math>v</math> in the unit circle, and the fact that <math>\sin v = 3/10</math> means that its ''y''-coordinate equals <math>3/10</math>.  | |
| - | <  | + | |
| - | + | ||
| - | + | ||
| - | <  | + | |
| - | + | ||
| - | [[  | + | [[Image:4_3_6_b1.gif|center]]  | 
| - | [[  | + | With the information that is given, we can define a right-angled triangle in the second quadrant which has a hypotenuse of 1 and a vertical side of length 3/10.  | 
| + | |||
| + | [[Image:4_3_6_b2.gif|center]]  | ||
| + | |||
| + | We can determine the triangle's remaining side by using the Pythagorean theorem,  | ||
| + | |||
| + | {{Displayed math||<math>a^2 + \Bigl(\frac{3}{10}\Bigr)^2 = 1^2</math>}}  | ||
| + | |||
| + | which gives that   | ||
| + | |||
| + | {{Displayed math||<math>a = \sqrt{1-\Bigl(\frac{3}{10}\Bigr)^2} = \sqrt{1-\frac{9}{100}} = \sqrt{\frac{91}{100}} = \frac{\sqrt{91}}{10}\,\textrm{.}</math>}}  | ||
| + | |||
| + | This means that the angle's ''x''-coordinate is <math>-a</math>, i.e. we have  | ||
| + | |||
| + | {{Displayed math||<math>\cos v=-\frac{\sqrt{91}}{10}</math>}}  | ||
| + | |||
| + | and thus  | ||
| + | |||
| + | {{Displayed math||<math>\tan v = \frac{\sin v}{\cos v} = \frac{\dfrac{3}{10}}{-\dfrac{\sqrt{91}}{10}} = -\frac{3}{\sqrt{91}}\,\textrm{.}</math>}}  | ||
Current revision
We draw an angle \displaystyle v in the unit circle, and the fact that \displaystyle \sin v = 3/10 means that its y-coordinate equals \displaystyle 3/10.
With the information that is given, we can define a right-angled triangle in the second quadrant which has a hypotenuse of 1 and a vertical side of length 3/10.
We can determine the triangle's remaining side by using the Pythagorean theorem,
| \displaystyle a^2 + \Bigl(\frac{3}{10}\Bigr)^2 = 1^2 | 
which gives that
| \displaystyle a = \sqrt{1-\Bigl(\frac{3}{10}\Bigr)^2} = \sqrt{1-\frac{9}{100}} = \sqrt{\frac{91}{100}} = \frac{\sqrt{91}}{10}\,\textrm{.} | 
This means that the angle's x-coordinate is \displaystyle -a, i.e. we have
| \displaystyle \cos v=-\frac{\sqrt{91}}{10} | 
and thus
| \displaystyle \tan v = \frac{\sin v}{\cos v} = \frac{\dfrac{3}{10}}{-\dfrac{\sqrt{91}}{10}} = -\frac{3}{\sqrt{91}}\,\textrm{.} | 


