Solution 3.3:6c
From Förberedande kurs i matematik 1
m   | 
			|||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | Before we even start thinking about transforming <math>\log_2</math> and <math>\log_3</math> to ln, we use the log laws  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\begin{align}  | 
| - | {{  | + | \log a^b &= b\cdot\log a\,,\\[5pt]  | 
| - | <  | + | \log (a\cdot b) &= \log a+\log b\,,  | 
| - | {{  | + | \end{align}</math>}}  | 
| - | + | ||
| + | to simplify the expression  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \log_{3}\log _{2}3^{118}  | ||
| + | &= \log_{3}(118\cdot\log_{2}3)\\[5pt]   | ||
| + | &= \log_{3}118 + \log_{3}\log_{2}3\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | With help of the relation <math>2^{\log_{2}x} = x</math> and <math>3^{\log_{3}x} = x</math> and taking the natural logarithm , we can express <math>\log_{2}</math> and <math>\log_{3}</math> using ln,  | ||
| + | |||
| + | {{Displayed math||<math>\log_{2}x=\frac{\ln x}{\ln 2}\quad</math> and <math>\quad\log_{3}x = \frac{\ln x}{\ln 3}\,\textrm{.}</math>}}  | ||
| + | |||
| + | The two terms <math>\log_3 118</math> and <math>\log_3\log_2 3</math> can therefore be written as   | ||
| + | |||
| + | {{Displayed math||<math>\log_{3}118 = \frac{\ln 118}{\ln 3}\quad</math> and <math>\quad\log_{3}\log_{2}3 = \log_{3}\frac{\ln 3}{\ln 2}\,,</math>}}  | ||
| + | |||
| + | where we can simplify the last expression further with the logarithm law, log (a/b) = log a – log b, and then transform <math>\log _{3}</math> to ln,  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \log_{3}\frac{\ln 3}{\ln 2}  | ||
| + | &= \log_{3}\ln 3 - \log_{3}\ln 2\\[5pt]   | ||
| + | &= \frac{\ln\ln 3}{\ln 3} - \frac{\ln\ln 2}{\ln 3}\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
| + | |||
| + | In all, we thus obtain  | ||
| + | |||
| + | {{Displayed math||<math>\log_{3}\log_{2}3^{118} = \frac{\ln 118}{\ln 3} + \frac{\ln \ln 3}{\ln 3} - \frac{\ln\ln 2}{\ln 3}\,\textrm{.}</math>}}  | ||
| + | |||
| + | Input into the calculator gives  | ||
| + | |||
| + | {{Displayed math||<math>\log_{3}\log_{2}3^{118}\approx 4\textrm{.}762\,\textrm{.}</math>}}  | ||
| + | |||
| + | |||
| + | Note: The button sequence on the calculator will be:  | ||
| + | |||
| + | |||
| + | <center>  | ||
| + | {|  | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|1  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|1  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|8  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|÷  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"   | ||
| + | |width="30px" align="center"|3  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"   | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"   | ||
| + | |width="30px" align="center"|+  | ||
| + | |}  | ||
| + | |-  | ||
| + | |height="7px"|  | ||
| + | |-  | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|3  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|÷  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|3  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"   | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"   | ||
| + | |width="30px" align="center"|-  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"   | ||
| + | |width="30px" align="center"|2  | ||
| + | |}  | ||
| + | |-  | ||
| + | |height="7px"|  | ||
| + | |-  | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|÷  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|3  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"  | ||
| + | |width="30px" align="center"|LN  | ||
| + | |}  | ||
| + | ||    | ||
| + | ||  | ||
| + | {| border="1" cellpadding="3" cellspacing="0"   | ||
| + | |width="30px" align="center"|=  | ||
| + | |}  | ||
| + | |}  | ||
| + | </center>  | ||
Current revision
Before we even start thinking about transforming \displaystyle \log_2 and \displaystyle \log_3 to ln, we use the log laws
| \displaystyle \begin{align}
 \log a^b &= b\cdot\log a\,,\\[5pt] \log (a\cdot b) &= \log a+\log b\,, \end{align}  | 
to simplify the expression
| \displaystyle \begin{align}
 \log_{3}\log _{2}3^{118} &= \log_{3}(118\cdot\log_{2}3)\\[5pt] &= \log_{3}118 + \log_{3}\log_{2}3\,\textrm{.} \end{align}  | 
With help of the relation \displaystyle 2^{\log_{2}x} = x and \displaystyle 3^{\log_{3}x} = x and taking the natural logarithm , we can express \displaystyle \log_{2} and \displaystyle \log_{3} using ln,
| \displaystyle \log_{2}x=\frac{\ln x}{\ln 2}\quad and \displaystyle \quad\log_{3}x = \frac{\ln x}{\ln 3}\,\textrm{.} | 
The two terms \displaystyle \log_3 118 and \displaystyle \log_3\log_2 3 can therefore be written as
| \displaystyle \log_{3}118 = \frac{\ln 118}{\ln 3}\quad and \displaystyle \quad\log_{3}\log_{2}3 = \log_{3}\frac{\ln 3}{\ln 2}\,, | 
where we can simplify the last expression further with the logarithm law, log (a/b) = log a – log b, and then transform \displaystyle \log _{3} to ln,
| \displaystyle \begin{align}
 \log_{3}\frac{\ln 3}{\ln 2} &= \log_{3}\ln 3 - \log_{3}\ln 2\\[5pt] &= \frac{\ln\ln 3}{\ln 3} - \frac{\ln\ln 2}{\ln 3}\,\textrm{.} \end{align}  | 
In all, we thus obtain
| \displaystyle \log_{3}\log_{2}3^{118} = \frac{\ln 118}{\ln 3} + \frac{\ln \ln 3}{\ln 3} - \frac{\ln\ln 2}{\ln 3}\,\textrm{.} | 
Input into the calculator gives
| \displaystyle \log_{3}\log_{2}3^{118}\approx 4\textrm{.}762\,\textrm{.} | 
Note: The button sequence on the calculator will be:
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | |||||||||||||||
  | 
  | 
  | 
  | 
  | 
  | 
  | 
  | |||||||||||||||
  | 
  | 
  | 
  | 
  | 
  | 
