Solution 2.1:1f
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| (4 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{NAVCONTENT_START}}  | ||
The squaring rule <math> (a+b)^2 = a^2+2ab+b^2</math> with <math>a=5 </math> and <math> b=4y </math> gives  | The squaring rule <math> (a+b)^2 = a^2+2ab+b^2</math> with <math>a=5 </math> and <math> b=4y </math> gives  | ||
| - | <math>  | + | {{Displayed math||<math>\begin{align}  | 
| - | &= 25+10\cdot 4y + 4^2y^2\\  | + | (5+4y)^2 &= 5^2+ 2\cdot 5 \cdot 4y +(4y)^2 \\[3pt]  | 
| - | &= 25+40y+16y^  | + | &= 25+10\cdot 4y + 4^2y^2\\[3pt]  | 
| - | &= 16y^2 +40y 25   | + | &= 25+40y+16y^2\\[3pt]  | 
| - | </math>  | + | &= 16y^2 +40y + 25\,\textrm{.}   | 
| - | + | \end{align}</math>}}  | |
| - | + | ||
| - | + | ||
Current revision
The squaring rule \displaystyle (a+b)^2 = a^2+2ab+b^2 with \displaystyle a=5 and \displaystyle b=4y gives
| \displaystyle \begin{align}
 (5+4y)^2 &= 5^2+ 2\cdot 5 \cdot 4y +(4y)^2 \\[3pt] &= 25+10\cdot 4y + 4^2y^2\\[3pt] &= 25+40y+16y^2\\[3pt] &= 16y^2 +40y + 25\,\textrm{.} \end{align}  | 
