Solution 4.3:8d
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:4_3_8d.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | It seems natural to try to use the addition formula on the numerator of the left-hand side,  | 
| - | + | ||
| - | {{  | + | {{Displayed math||<math>\begin{align}  | 
| + | \frac{\cos (u+v)}{\cos u\cos v}  | ||
| + | &= \frac{\cos u\cdot\cos v - \sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt]   | ||
| + | &= 1-\frac{\sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt]  | ||
| + | &= 1-\tan u\cdot\tan v\,\textrm{.}  | ||
| + | \end{align}</math>}}  | ||
Current revision
It seems natural to try to use the addition formula on the numerator of the left-hand side,
| \displaystyle \begin{align}
 \frac{\cos (u+v)}{\cos u\cos v} &= \frac{\cos u\cdot\cos v - \sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt] &= 1-\frac{\sin u\cdot\sin v}{\cos u\cdot\cos v}\\[5pt] &= 1-\tan u\cdot\tan v\,\textrm{.} \end{align}  | 
