Solution 4.3:8c
From Förberedande kurs i matematik 1
 (Ny sida: {{NAVCONTENT_START}} <center> Bild:4_3_8c-1(2).gif </center> {{NAVCONTENT_STOP}} {{NAVCONTENT_START}} <center> Bild:4_3_8c-2(2).gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | One could write <math>\tan\frac{u}{2}</math> as a quotient involving sine and cosine, and then continue with the formula for half-angles,  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\tan\frac{u}{2} = \frac{\sin\dfrac{u}{2}}{\cos\dfrac{u}{2}} = \ldots</math>}}  | 
| - | {{  | + | |
| - | <  | + | but because this leads to square roots and difficulties with keeping a check on the correct sign in front of the roots, it is perhaps simpler instead to go backwards and work with the right-hand side.  | 
| - | {{  | + | |
| + | We write <math>u</math> as <math>2\cdot(u/2)</math>and use the formula for double angles (so as to end up with a right-hand side which has <math>u/2</math> as its argument),  | ||
| + | |||
| + | {{Displayed math||<math>\frac{\sin u}{1+\cos u} = \frac{\sin \Bigl(2\cdot\dfrac{u}{2}\Bigr)}{1+\cos\Bigl(2\cdot\dfrac{u}{2}\Bigr)} = \frac{2\cos\dfrac{u}{2}\cdot \sin\dfrac{u}{2}}{1+\cos^2\cfrac{u}{2}-\sin^2\cfrac{u}{2}}\,\textrm{.}</math>}}  | ||
| + | |||
| + | Writing the 1 in the denominator as <math>\cos^2(u/2) + \sin^2(u/2)</math> using the Pythagorean identity,  | ||
| + | |||
| + | {{Displayed math||<math>\begin{align}  | ||
| + | \frac{2\cos\dfrac{u}{2}\cdot\sin\dfrac{u}{2}}{1+\cos^2\dfrac{u}{2}-\sin^2\dfrac{u}{2}}  | ||
| + | &= \frac{2\cos\dfrac{u}{2}\sin\dfrac{u}{2}}{\cos^2\dfrac{u}{2} + \sin^2\dfrac{u}{2} + \cos^2\dfrac{u}{2} - \sin^2\dfrac{u}{2}}\\[8pt]   | ||
| + | &= \frac{2\cos\dfrac{u}{2}\sin\dfrac{u}{2}}{2\cos^2\dfrac{u}{2}}\\[5pt]  | ||
| + | &= \frac{\sin\dfrac{u}{2}}{\cos\dfrac{u}{2}}\\[8pt]  | ||
| + | &= \tan\frac{u}{2}\,\textrm{.}   | ||
| + | \end{align}</math>}}  | ||
Current revision
One could write \displaystyle \tan\frac{u}{2} as a quotient involving sine and cosine, and then continue with the formula for half-angles,
| \displaystyle \tan\frac{u}{2} = \frac{\sin\dfrac{u}{2}}{\cos\dfrac{u}{2}} = \ldots | 
but because this leads to square roots and difficulties with keeping a check on the correct sign in front of the roots, it is perhaps simpler instead to go backwards and work with the right-hand side.
We write \displaystyle u as \displaystyle 2\cdot(u/2)and use the formula for double angles (so as to end up with a right-hand side which has \displaystyle u/2 as its argument),
| \displaystyle \frac{\sin u}{1+\cos u} = \frac{\sin \Bigl(2\cdot\dfrac{u}{2}\Bigr)}{1+\cos\Bigl(2\cdot\dfrac{u}{2}\Bigr)} = \frac{2\cos\dfrac{u}{2}\cdot \sin\dfrac{u}{2}}{1+\cos^2\cfrac{u}{2}-\sin^2\cfrac{u}{2}}\,\textrm{.} | 
Writing the 1 in the denominator as \displaystyle \cos^2(u/2) + \sin^2(u/2) using the Pythagorean identity,
| \displaystyle \begin{align}
 \frac{2\cos\dfrac{u}{2}\cdot\sin\dfrac{u}{2}}{1+\cos^2\dfrac{u}{2}-\sin^2\dfrac{u}{2}} &= \frac{2\cos\dfrac{u}{2}\sin\dfrac{u}{2}}{\cos^2\dfrac{u}{2} + \sin^2\dfrac{u}{2} + \cos^2\dfrac{u}{2} - \sin^2\dfrac{u}{2}}\\[8pt] &= \frac{2\cos\dfrac{u}{2}\sin\dfrac{u}{2}}{2\cos^2\dfrac{u}{2}}\\[5pt] &= \frac{\sin\dfrac{u}{2}}{\cos\dfrac{u}{2}}\\[8pt] &= \tan\frac{u}{2}\,\textrm{.} \end{align}  | 
