Solution 4.3:4f
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:4_3_4f.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | Using the addition formula for cosine, we can express <math>\cos (v-\pi/3)</math>  | 
| - | <  | + | in terms of <math>\cos v</math> and <math>\sin v</math>,  | 
| - | {{  | + | |
| + | {{Displayed math||<math>\cos\Bigl(v-\frac{\pi}{3}\Bigr) = \cos v\cdot \cos\frac{\pi }{3} + \sin v\cdot \sin\frac{\pi}{3}\,\textrm{.}</math>}}  | ||
| + | |||
| + | Since <math>\cos v = b</math> and <math>\sin v = \sqrt{1-b^2}</math> we obtain  | ||
| + | |||
| + | {{Displayed math||<math>\cos\Bigl(v-\frac{\pi}{3}\Bigr) = b\cdot\frac{1}{2} + \sqrt{1-b^2}\cdot\frac{\sqrt{3}}{2}\,\textrm{.}</math>}}  | ||
Current revision
Using the addition formula for cosine, we can express \displaystyle \cos (v-\pi/3) in terms of \displaystyle \cos v and \displaystyle \sin v,
| \displaystyle \cos\Bigl(v-\frac{\pi}{3}\Bigr) = \cos v\cdot \cos\frac{\pi }{3} + \sin v\cdot \sin\frac{\pi}{3}\,\textrm{.} | 
Since \displaystyle \cos v = b and \displaystyle \sin v = \sqrt{1-b^2} we obtain
| \displaystyle \cos\Bigl(v-\frac{\pi}{3}\Bigr) = b\cdot\frac{1}{2} + \sqrt{1-b^2}\cdot\frac{\sqrt{3}}{2}\,\textrm{.} | 
