Solution 4.3:4e
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:4_3_4e.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | The addition formula for sine gives us that  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\sin\Bigl(v+\frac{\pi}{4}\Bigr) = \sin v\cdot\cos\frac{\pi }{4} + \cos v\cdot\sin\frac{\pi}{4}\,\textrm{.}</math>}}  | 
| + | |||
| + | Because we know from exercise b that <math>\sin v = \sqrt{1-b^2}</math> we use that    | ||
| + | <math>\cos (\pi/4) = \sin (\pi/4) = 1/\!\sqrt{2}</math> to obtain  | ||
| + | |||
| + | {{Displayed math||<math>\sin\Bigl(v+\frac{\pi }{4}\Bigr) = \sqrt{1-b^2}\cdot\frac{1}{\sqrt{2}} + b\cdot\frac{1}{\sqrt{2}}\,\textrm{.}</math>}}  | ||
Current revision
The addition formula for sine gives us that
| \displaystyle \sin\Bigl(v+\frac{\pi}{4}\Bigr) = \sin v\cdot\cos\frac{\pi }{4} + \cos v\cdot\sin\frac{\pi}{4}\,\textrm{.} | 
Because we know from exercise b that \displaystyle \sin v = \sqrt{1-b^2} we use that \displaystyle \cos (\pi/4) = \sin (\pi/4) = 1/\!\sqrt{2} to obtain
| \displaystyle \sin\Bigl(v+\frac{\pi }{4}\Bigr) = \sqrt{1-b^2}\cdot\frac{1}{\sqrt{2}} + b\cdot\frac{1}{\sqrt{2}}\,\textrm{.} | 
