Solution 3.4:2a
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:3_4_2a.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | The left-hand side is "2 raised to something", and therefore a positive number regardless of whatever value the exponent has. We can therefore take the log of both sides,  | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\ln 2^{x^2-2} = \ln 1\,,</math>}}  | 
| + | |||
| + | and use the log law <math>\ln a^b = b\cdot \ln a</math> to get the exponent <math>x^2-2</math> as a factor on the left-hand side,  | ||
| + | |||
| + | {{Displayed math||<math>\bigl(x^2-2\bigr)\ln 2 = \ln 1\,\textrm{.}</math>}}  | ||
| + | |||
| + | Because <math>e^{0}=1</math>, so <math>\ln 1 = 0</math>, giving  | ||
| + | |||
| + | {{Displayed math||<math>(x^2-2)\ln 2=0\,\textrm{.}</math>}}  | ||
| + | |||
| + | This means that ''x'' must satisfy the second-degree equation  | ||
| + | |||
| + | {{Displayed math||<math>x^2-2 = 0\,\textrm{.}</math>}}  | ||
| + | |||
| + | Taking the root gives <math>x=-\sqrt{2}</math> or <math>x=\sqrt{2}\,</math>.  | ||
| + | |||
| + | |||
| + | Note: The exercise is taken from a Finnish upper-secondary final examination from March 2007.  | ||
Current revision
The left-hand side is "2 raised to something", and therefore a positive number regardless of whatever value the exponent has. We can therefore take the log of both sides,
| \displaystyle \ln 2^{x^2-2} = \ln 1\,, | 
and use the log law \displaystyle \ln a^b = b\cdot \ln a to get the exponent \displaystyle x^2-2 as a factor on the left-hand side,
| \displaystyle \bigl(x^2-2\bigr)\ln 2 = \ln 1\,\textrm{.} | 
Because \displaystyle e^{0}=1, so \displaystyle \ln 1 = 0, giving
| \displaystyle (x^2-2)\ln 2=0\,\textrm{.} | 
This means that x must satisfy the second-degree equation
| \displaystyle x^2-2 = 0\,\textrm{.} | 
Taking the root gives \displaystyle x=-\sqrt{2} or \displaystyle x=\sqrt{2}\,.
Note: The exercise is taken from a Finnish upper-secondary final examination from March 2007.
