Solution 3.3:3h
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			 (Ny sida: {{NAVCONTENT_START}} <center> Bild:3_3_3h.gif </center> {{NAVCONTENT_STOP}})  | 
				m   | 
			||
| (3 intermediate revisions not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{  | + | Because <math>a^{2}\sqrt{a} = a^{2}a^{1/2} = a^{2+1/2} = a^{5/2}</math>, the logarithm law, <math>b\lg a = \lg a^b</math>, gives that   | 
| - | <  | + | |
| - | {{  | + | {{Displayed math||<math>\log_{a} \bigl(a^{2}\sqrt{a}\,\bigr) = \log_{a}a^{5/2} = \frac{5}{2}\cdot\log_{a}a = \frac{5}{2}\cdot 1 = \frac{5}{2}\,,</math>}}  | 
| + | |||
| + | where we have used that <math>\log_{a}a = 1\,</math>.  | ||
| + | |||
| + | |||
| + | Note: In this exercise, we assume, implicitly, that <math>a > 0</math> and <math>a\ne 1\,</math>.  | ||
Current revision
Because \displaystyle a^{2}\sqrt{a} = a^{2}a^{1/2} = a^{2+1/2} = a^{5/2}, the logarithm law, \displaystyle b\lg a = \lg a^b, gives that
| \displaystyle \log_{a} \bigl(a^{2}\sqrt{a}\,\bigr) = \log_{a}a^{5/2} = \frac{5}{2}\cdot\log_{a}a = \frac{5}{2}\cdot 1 = \frac{5}{2}\,, | 
where we have used that \displaystyle \log_{a}a = 1\,.
Note: In this exercise, we assume, implicitly, that \displaystyle a > 0 and \displaystyle a\ne 1\,.
