2.1 Algebraic expressions
From Förberedande kurs i matematik 1
(Idiom, localisation of terminology and notation) |
|||
(19 intermediate revisions not shown.) | |||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
+ | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
+ | | style="border-bottom:1px solid #797979" width="5px" | | ||
+ | {{Selected tab|[[2.1 Algebraic expressions|Theory]]}} | ||
+ | {{Not selected tab|[[2.1 Exercises|Exercises]]}} | ||
+ | | style="border-bottom:1px solid #797979" width="100%"| | ||
+ | |} | ||
+ | |||
{{Info| | {{Info| | ||
- | ''' | + | '''Contents:''' |
- | * | + | * Distributive law |
- | * | + | * Expansion and factorisation |
- | * | + | *Difference of two squares |
- | * | + | * Rational expressions |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section you will have learned how to: | |
- | * | + | *Simplify complicated algebraic expressions. |
- | * | + | *Factorise expressions, including perfect squares and the difference of two squares. |
- | * | + | *Expand expressions, including perfect squares and the difference of two squares. |
}} | }} | ||
- | == | + | == Distributive Law == |
- | + | The distributive law specifies how to multiply a bracketed expression by a factor. | |
- | + | ||
- | <center>{{:2.1 - | + | <center>{{:2.1 - Figure - The distributive law}}</center> |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 1''' |
<ol type="a"> | <ol type="a"> | ||
Line 32: | Line 38: | ||
<li><math>2(a-b) = 2a -2b</math></li> | <li><math>2(a-b) = 2a -2b</math></li> | ||
<li><math>x \left(\frac{1}{x} + \frac{1}{x^2} \right) | <li><math>x \left(\frac{1}{x} + \frac{1}{x^2} \right) | ||
- | = x\ | + | = x\times \frac{1}{x} + x \times \frac{1}{x^2} |
= \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} | = \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} | ||
= 1 + \frac{1}{x}</math></li> | = 1 + \frac{1}{x}</math></li> | ||
Line 40: | Line 46: | ||
</div> | </div> | ||
- | + | Using the distributive law we can also see how to tackle | |
+ | a minus sign in front of a bracketed expression. | ||
+ | The rule says that a minus sign in front of a bracket can be | ||
+ | eliminated if all the terms inside the brackets switch signs. | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 2''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>-(x+y) = (-1) \ | + | <li><math>-(x+y) = (-1) \times (x+y) = (-1)x + (-1)y = -x-y</math></li> |
- | <li><math>-(x^2-x) = (-1) \ | + | <li><math>-(x^2-x) = (-1) \times (x^2-x) = (-1)x^2 -(-1)x |
= -x^2 +x</math><br/> | = -x^2 +x</math><br/> | ||
- | + | where we have in the final step used <math>-(-1)x = (-1)(-1)x = 1\times x = x\,\mbox{.}</math></li> | |
- | <li><math>-(x+y-y^3) = (-1)\ | + | <li><math>-(x+y-y^3) = (-1)\times (x+y-y^3) = (-1)\times x |
- | + (-1) \ | + | + (-1) \times y -(-1)\times y^3</math><br/> |
<math>\phantom{-(x+y-y^3)}{} = -x-y+y^3</math></li> | <math>\phantom{-(x+y-y^3)}{} = -x-y+y^3</math></li> | ||
<li><math>x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2</math><br/> | <li><math>x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2</math><br/> | ||
Line 58: | Line 67: | ||
</div> | </div> | ||
- | + | Applying the distributive law this way round - converting a product of factors into a sum of terms - is called ''expanding''. If the distributive law is applied in reverse we say we “factorise” the expression. We usually want to factorise as thoroughly as possible, by | |
+ | identifying the highet factor shared by all the terms. | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>3x +9y = 3x + 3\ | + | <li><math>3x +9y = 3x + 3\times 3y = 3(x+3y)</math></li> |
- | <li><math>xy + y^2 = xy + y\ | + | <li><math>xy + y^2 = xy + y\times y = y(x+y)</math></li> |
- | <li><math>2x^2 -4x = 2x\ | + | <li><math>2x^2 -4x = 2x\times x - 2\times 2\times x = 2x(x-2)</math></li> |
<li><math>\frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1</math></li> | <li><math>\frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1</math></li> | ||
</ol> | </ol> | ||
Line 72: | Line 82: | ||
- | == | + | == Squaring == |
- | + | On occasions the distributive law has to be used repeatedly to deal with larger expressions. | |
+ | If we consider | ||
- | {{ | + | {{Displayed math||<math>(a+b)(c+d)</math>}} |
- | + | and regard <math>a+b</math> as a factor that multiplies the bracketed expression <math>(c+d)</math> we get | |
- | {{ | + | {{Displayed math||<math>\eqalign{ |
\bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d) | \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d) | ||
&= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c | &= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c | ||
Line 87: | Line 98: | ||
&= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}} | &= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}} | ||
- | + | Then the <math>c</math> and the <math>d</math> are multiplied into their respective brackets, | |
- | {{ | + | {{Displayed math||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}} |
- | + | A mnemonic for this formula is: | |
- | <center>{{:2.1 - | + | <center>{{:2.1 - Figure - The distributive law twice}}</center> |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 4''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>(x+1)(x-2) = x\ | + | <li><math>(x+1)(x-2) = x\times x + x \times (-2) + 1 \times x + 1 \times (-2) |
= x^2 -2x+x-2</math><br/> | = x^2 -2x+x-2</math><br/> | ||
<math>\phantom{(x+1)(x-2)}{}=x^2 -x-2</math></li> | <math>\phantom{(x+1)(x-2)}{}=x^2 -x-2</math></li> | ||
- | <li><math>3(x-y)(2x+1) = 3(x\ | + | <li><math>3(x-y)(2x+1) = 3(x\times 2x + x\times 1 - y \times 2x - y \times 1) |
= 3(2x^2 +x-2xy-y)</math><br/> | = 3(2x^2 +x-2xy-y)</math><br/> | ||
<math>\phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y</math></li> | <math>\phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y</math></li> | ||
- | <li><math>(1-x)(2-x) = 1\ | + | <li><math>(1-x)(2-x) = 1\times 2 + 1 \times (-x) -x\times 2 - x\times (-x) |
= 2-x-2x+x^2</math><br/> | = 2-x-2x+x^2</math><br/> | ||
<math>\phantom{(1-x)(2-x)}{}=2-3x+x^2</math> | <math>\phantom{(1-x)(2-x)}{}=2-3x+x^2</math> | ||
- | + | where we have used <math>-x\times (-x) = (-1)x \times (-1)x = (-1)^2 x^2 = 1\times x^2 = x^2</math>. | |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | Two important special cases of the above formula are when <math>a+b</math> and <math>c+d</math> are the same expression | |
<div class="regel"> | <div class="regel"> | ||
- | + | ||
- | {{ | + | {{Displayed math||<math>(a+b)^2 = a^2 +2ab + b^2</math>}} |
- | {{ | + | {{Displayed math||<math>(a-b)^2 = a^2 -2ab + b^2</math>}} |
</div> | </div> | ||
- | |||
- | Dessa formler kallas för första och andra kvadreringsregeln. | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>(x+2)^2 = x^2 + 2\ | + | <li><math>(x+2)^2 = x^2 + 2\times 2x+ 2^2 = x^2 +4x +4</math></li> |
- | <li><math>(-x+3)^2 = (-x)^2 + 2\ | + | <li><math>(-x+3)^2 = (-x)^2 + 2\times 3(-x) + 3^2 = x^2 -6x +9</math> <br> |
- | : | + | : where <math>(-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \times x^2 = x^2\,\mbox{.}</math></li> |
- | <li><math>(x^2 -4)^2 = (x^2)^2 - 2 \ | + | <li><math>(x^2 -4)^2 = (x^2)^2 - 2 \times 4x^2 + 4^2 |
= x^4 -8x^2 +16</math></li> | = x^4 -8x^2 +16</math></li> | ||
<li><math>(x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)</math><br/> | <li><math>(x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)</math><br/> | ||
Line 137: | Line 146: | ||
<math>\phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8</math></li> | <math>\phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8</math></li> | ||
<li><math>(x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)</math><br/> | <li><math>(x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)</math><br/> | ||
- | <math>\phantom{(x-2)^3}{}=x \ | + | <math>\phantom{(x-2)^3}{}=x \times x^2 + x\times (-4x) + x\times 4 |
- | - 2\ | + | - 2\times x^2 - 2 \times (-4x)-2 \times 4</math><br/> |
<math>\phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 | <math>\phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 | ||
= x^3-6x^2 + 12x -8</math></li> | = x^3-6x^2 + 12x -8</math></li> | ||
Line 144: | Line 153: | ||
</div> | </div> | ||
- | + | These rules are also used in the reverse direction to factorise expressions. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
<ol type="a"> | <ol type="a"> | ||
<li><math>x^2 + 2x+ 1 = (x+1)^2</math></li> | <li><math>x^2 + 2x+ 1 = (x+1)^2</math></li> | ||
- | <li><math>x^6-4x^3 +4 = (x^3)^2 - 2\ | + | <li><math>x^6-4x^3 +4 = (x^3)^2 - 2\times 2x^3 +2^2 = (x^3-2)^2</math></li> |
- | <li><math>x^2 +x + \frac{1}{4} = x^2 + 2\ | + | <li><math>x^2 +x + \frac{1}{4} = x^2 + 2\times\frac{1}{2}x |
+ \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2</math></li> | + \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2</math></li> | ||
</ol> | </ol> | ||
Line 158: | Line 167: | ||
- | == | + | == Difference of two squares == |
- | + | A third special case of the first formula in the last section is the difference of two squares rule. | |
<div class="regel"> | <div class="regel"> | ||
- | ''' | + | '''Difference of two squares:''' |
- | {{ | + | {{Displayed math||<math>(a+b)(a-b) = a^2 -b^2</math>}} |
</div> | </div> | ||
- | + | This formula can be obtained directly by expanding the left hand side | |
- | {{ | + | {{Displayed math||<math>(a+b)(a-b) |
= a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b) | = a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b) | ||
= a^2 -ab+ab-b^2 | = a^2 -ab+ab-b^2 | ||
Line 175: | Line 184: | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
<ol type="a"> | <ol type="a"> | ||
Line 188: | Line 197: | ||
- | == | + | == Rational expressions== |
- | + | Working with fractions containing algebraic expressions is very similar to carrying out ordinary calculations with fractions. | |
- | + | Multiplication and division of algebraic fractions follow the same rules that apply to ordinary fractions, | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math> \frac{a}{b} \cdot \frac{c}{d} |
- | = \frac{a\ | + | = \frac{a\, c}{b\, d} |
- | \quad \mbox{ | + | \quad \mbox{and} \quad |
\frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}} | \frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}} | ||
- | = \frac{a\ | + | = \frac{a\, d}{b\, c} \; \mbox{.}</math>}} |
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\frac{3x}{x-y} \ | + | <li><math>\frac{3x}{x-y} \times \frac{4x}{2x+y} |
- | = \frac{3x\ | + | = \frac{3x\times 4x}{(x-y)\times(2x+y)} |
= \frac{12x^2}{(x-y)(2x+y)}</math></li> | = \frac{12x^2}{(x-y)(2x+y)}</math></li> | ||
<li><math>\frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} | <li><math>\frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} | ||
Line 216: | Line 225: | ||
</div> | </div> | ||
- | + | A fractional expression can have its numerator and denominator multiplied by the same factor | |
- | {{ | + | {{Displayed math||<math>\frac{x+2}{x+1} |
= \frac{(x+2)(x+3)}{(x+1)(x+3)} | = \frac{(x+2)(x+3)}{(x+1)(x+3)} | ||
= \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)} | = \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)} | ||
= \dots</math>}} | = \dots</math>}} | ||
- | + | We can cancel factors that the numerator and denominator have in common | |
- | + | {{Displayed math||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) } | |
- | {{ | + | |
= \frac{(x+2)(x+4)}{(x+1)(x+4)} | = \frac{(x+2)(x+4)}{(x+1)(x+4)} | ||
= \frac{x+2}{x+1} \mbox{.}</math>}} | = \frac{x+2}{x+1} \mbox{.}</math>}} | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 9''' |
<ol type="a"> | <ol type="a"> | ||
Line 237: | Line 245: | ||
<li><math>\frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}</math></li> | <li><math>\frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}</math></li> | ||
<li><math>\frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} | <li><math>\frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} | ||
- | = \left\{\,\text{ | + | = \left\{\,\text{Difference of two squares}\,\right\} |
= \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} | = \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} | ||
= \frac{x-y}{x+2}</math></li> | = \frac{x-y}{x+2}</math></li> | ||
Line 243: | Line 251: | ||
</div> | </div> | ||
- | + | When fractional expressions are added or subtracted they may need to be placed over a common denominator. | |
- | {{ | + | {{Displayed math||<math>\frac{1}{x} - \frac{1}{x-1} |
- | = \frac{1}{x} \ | + | = \frac{1}{x} \times\frac{x-1}{x-1} - \frac{1}{x-1} \times\frac{x}{x} |
= \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)} | = \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)} | ||
= \frac{x-1-x}{x(x-1)} | = \frac{x-1-x}{x(x-1)} | ||
= \frac{-1}{x(x-1)} \; \mbox{.}</math>}} | = \frac{-1}{x(x-1)} \; \mbox{.}</math>}} | ||
- | + | As with ordinary fractions, it's possible to find a common denominator by simply multiplying the two denominators, but it is better to find the smallest, simplest expression that both denominators go into: the lowest common denominator or LCD. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 10''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\frac{1}{x+1} + \frac{1}{x+2}\quad</math> | + | <li><math>\frac{1}{x+1} + \frac{1}{x+2}\quad</math> has <math>\ \text{LCD} |
= (x+1)(x+2)</math> <br><br> | = (x+1)(x+2)</math> <br><br> | ||
- | + | Convert the first term using <math>(x+2)</math> and the second term using <math>(x+1)</math> | |
- | {{ | + | {{Displayed math||<math>\begin{align*} |
\frac{1}{x+1} + \frac{1}{x+2} | \frac{1}{x+1} + \frac{1}{x+2} | ||
&= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt] | &= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt] | ||
Line 266: | Line 274: | ||
= \frac{2x+3}{(x+1)(x+2)}\:\mbox{.} | = \frac{2x+3}{(x+1)(x+2)}\:\mbox{.} | ||
\end{align*}</math>}}</li> | \end{align*}</math>}}</li> | ||
- | <li><math>\frac{1}{x} + \frac{1}{x^2}\quad</math> | + | <li><math>\frac{1}{x} + \frac{1}{x^2}\quad</math> has <math>\ \text{LCD} |
= x^2</math><br><br> | = x^2</math><br><br> | ||
- | + | We only need to convert the first term to get a common denominator | |
- | {{ | + | {{Displayed math||<math>\frac{1}{x} + \frac{1}{x^2} |
= \frac{x}{x^2} + \frac{1}{x^2} | = \frac{x}{x^2} + \frac{1}{x^2} | ||
- | = \frac{x+1}{x^2}</math>}}</li> | + | = \frac{x+1}{x^2}\,\mbox{.}</math>}}</li> |
- | <li><math>\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad</math> | + | <li><math>\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad</math> has <math>\ |
- | \text{ | + | \text{LCD}= x^2(x+1)^2(x+2)</math><br><br> |
- | + | The first term is converted using <math>x(x+2)</math> while the other term is converted using <math>(x+1)^2</math> | |
- | {{ | + | {{Displayed math||<math>\begin{align*} |
\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)} | \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)} | ||
&= \frac{x(x+2)}{x^2(x+1)^2(x+2)} | &= \frac{x(x+2)}{x^2(x+1)^2(x+2)} | ||
Line 282: | Line 290: | ||
&= \frac{x^2+2x-(x^2+2x+1)}{x^2(x+1)^2(x+2)}\\[4pt] | &= \frac{x^2+2x-(x^2+2x+1)}{x^2(x+1)^2(x+2)}\\[4pt] | ||
&= \frac{x^2+2x-x^2-2x-1}{x^2(x+1)^2(x+2)}\\[4pt] | &= \frac{x^2+2x-x^2-2x-1}{x^2(x+1)^2(x+2)}\\[4pt] | ||
- | &= \frac{-1}{x^2(x+1)^2(x+2)} | + | &= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.} |
\end{align*}</math>}}</li> | \end{align*}</math>}}</li> | ||
- | <li><math>\frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad</math> | + | <li><math>\frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad</math> has <math>\ |
- | \text{ | + | \text{LCD}=x(x-1)(x+1)</math><br><br> |
- | + | We must convert all the terms so that they have the common denominator <math>x(x-1)(x+1)</math> | |
- | {{ | + | {{Displayed math||<math>\begin{align*} |
\frac{x}{x+1} - \frac{1}{x(x-1)} -1 | \frac{x}{x+1} - \frac{1}{x(x-1)} -1 | ||
&= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)} | &= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)} | ||
Line 295: | Line 303: | ||
&= \frac{x^3-x^2 -(x+1) -(x^3-x)}{x(x-1)(x+1)}\\[4pt] | &= \frac{x^3-x^2 -(x+1) -(x^3-x)}{x(x-1)(x+1)}\\[4pt] | ||
&= \frac{x^3-x^2 -x-1 -x^3+x}{x(x-1)(x+1)}\\[4pt] | &= \frac{x^3-x^2 -x-1 -x^3+x}{x(x-1)(x+1)}\\[4pt] | ||
- | &= \frac{-x^2-1}{x(x-1)(x+1)} | + | &= \frac{-x^2-1}{x(x-1)(x+1)}\,\mbox{.} |
\end{align*}</math>}}</li> | \end{align*}</math>}}</li> | ||
</ol> | </ol> | ||
</div> | </div> | ||
- | + | To simplify large expressions it is often necessary both to cancel factors and to multiply numerators and denominators by factors. Where possible, therefore, we should keep expressions in a factorised form, and not expand expressions we will later need to factorise again. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 11''' |
<ol type="a"> | <ol type="a"> | ||
Line 333: | Line 341: | ||
- | [[2.1 | + | [[2.1 Exercises|Exercises]] |
- | <div class="inforuta"> | + | <div class="inforuta" style="width:580px;"> |
- | ''' | + | '''Study advice''' |
- | ''' | + | '''The basic and final tests''' |
- | + | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | |
- | ''' | + | '''Keep in mind that...''' |
- | + | If you make a mistake somewhere the rest of the calculation will be wrong, so be careful! | |
- | + | Use many intermediate steps. If you are unsure of a calculation do it in many small steps rather than one big step. | |
- | + | Do not expand unnecessarily. You later may be forced to factorise what you earlier expanded. | |
- | ''' | + | '''Reviews |
+ | ''' | ||
- | [http://en.wikipedia.org/wiki/Algebra | + | [http://en.wikipedia.org/wiki/Algebra Learn more about algebra in the English Wikipedia ] |
- | [http://www.jamesbrennan.org/algebra/ Understanding Algebra - | + | [http://www.jamesbrennan.org/algebra/ Understanding Algebra - English text on the Web ] |
- | ''' | + | '''Useful web sites''' |
</div> | </div> |
Current revision
Theory | Exercises |
Contents:
- Distributive law
- Expansion and factorisation
- Difference of two squares
- Rational expressions
Learning outcomes:
After this section you will have learned how to:
- Simplify complicated algebraic expressions.
- Factorise expressions, including perfect squares and the difference of two squares.
- Expand expressions, including perfect squares and the difference of two squares.
Distributive Law
The distributive law specifies how to multiply a bracketed expression by a factor.
Example 1
- \displaystyle 4(x+y) = 4x + 4y
- \displaystyle 2(a-b) = 2a -2b
- \displaystyle x \left(\frac{1}{x} + \frac{1}{x^2} \right) = x\times \frac{1}{x} + x \times \frac{1}{x^2} = \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} = 1 + \frac{1}{x}
- \displaystyle a(x+y+z) = ax + ay + az
Using the distributive law we can also see how to tackle a minus sign in front of a bracketed expression. The rule says that a minus sign in front of a bracket can be eliminated if all the terms inside the brackets switch signs.
Example 2
- \displaystyle -(x+y) = (-1) \times (x+y) = (-1)x + (-1)y = -x-y
- \displaystyle -(x^2-x) = (-1) \times (x^2-x) = (-1)x^2 -(-1)x
= -x^2 +x
where we have in the final step used \displaystyle -(-1)x = (-1)(-1)x = 1\times x = x\,\mbox{.} - \displaystyle -(x+y-y^3) = (-1)\times (x+y-y^3) = (-1)\times x
+ (-1) \times y -(-1)\times y^3
\displaystyle \phantom{-(x+y-y^3)}{} = -x-y+y^3 - \displaystyle x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2
\displaystyle \phantom{x^2-2x-(3x+2)}{} = x^2 -5x -2
Applying the distributive law this way round - converting a product of factors into a sum of terms - is called expanding. If the distributive law is applied in reverse we say we “factorise” the expression. We usually want to factorise as thoroughly as possible, by identifying the highet factor shared by all the terms.
Example 3
- \displaystyle 3x +9y = 3x + 3\times 3y = 3(x+3y)
- \displaystyle xy + y^2 = xy + y\times y = y(x+y)
- \displaystyle 2x^2 -4x = 2x\times x - 2\times 2\times x = 2x(x-2)
- \displaystyle \frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1
Squaring
On occasions the distributive law has to be used repeatedly to deal with larger expressions. If we consider
\displaystyle (a+b)(c+d) |
and regard \displaystyle a+b as a factor that multiplies the bracketed expression \displaystyle (c+d) we get
\displaystyle \eqalign{
\bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d) &= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c + \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,d\mbox{,}\cr (a+b)\,(c+d) &= (a+b)\,c + (a+b)\,d\mbox{.}} |
Then the \displaystyle c and the \displaystyle d are multiplied into their respective brackets,
\displaystyle (a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.} |
A mnemonic for this formula is:
Example 4
- \displaystyle (x+1)(x-2) = x\times x + x \times (-2) + 1 \times x + 1 \times (-2)
= x^2 -2x+x-2
\displaystyle \phantom{(x+1)(x-2)}{}=x^2 -x-2 - \displaystyle 3(x-y)(2x+1) = 3(x\times 2x + x\times 1 - y \times 2x - y \times 1)
= 3(2x^2 +x-2xy-y)
\displaystyle \phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y - \displaystyle (1-x)(2-x) = 1\times 2 + 1 \times (-x) -x\times 2 - x\times (-x)
= 2-x-2x+x^2
\displaystyle \phantom{(1-x)(2-x)}{}=2-3x+x^2 where we have used \displaystyle -x\times (-x) = (-1)x \times (-1)x = (-1)^2 x^2 = 1\times x^2 = x^2.
Two important special cases of the above formula are when \displaystyle a+b and \displaystyle c+d are the same expression
\displaystyle (a+b)^2 = a^2 +2ab + b^2 |
\displaystyle (a-b)^2 = a^2 -2ab + b^2 |
Example 5
- \displaystyle (x+2)^2 = x^2 + 2\times 2x+ 2^2 = x^2 +4x +4
- \displaystyle (-x+3)^2 = (-x)^2 + 2\times 3(-x) + 3^2 = x^2 -6x +9
- where \displaystyle (-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \times x^2 = x^2\,\mbox{.}
- \displaystyle (x^2 -4)^2 = (x^2)^2 - 2 \times 4x^2 + 4^2 = x^4 -8x^2 +16
- \displaystyle (x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)
\displaystyle \phantom{(x+1)^2-(x-1)^2}{}= x^2 +2x +1 -x^2 + 2x-1
\displaystyle \phantom{(x+1)^2-(x-1)^2}{} = 2x+2x = 4x - \displaystyle (2x+4)(x+2) = 2(x+2)(x+2) = 2(x+2)^2 = 2(x^2 + 4x+ 4)
\displaystyle \phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8 - \displaystyle (x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)
\displaystyle \phantom{(x-2)^3}{}=x \times x^2 + x\times (-4x) + x\times 4 - 2\times x^2 - 2 \times (-4x)-2 \times 4
\displaystyle \phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 = x^3-6x^2 + 12x -8
These rules are also used in the reverse direction to factorise expressions.
Example 6
- \displaystyle x^2 + 2x+ 1 = (x+1)^2
- \displaystyle x^6-4x^3 +4 = (x^3)^2 - 2\times 2x^3 +2^2 = (x^3-2)^2
- \displaystyle x^2 +x + \frac{1}{4} = x^2 + 2\times\frac{1}{2}x + \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2
Difference of two squares
A third special case of the first formula in the last section is the difference of two squares rule.
Difference of two squares:
\displaystyle (a+b)(a-b) = a^2 -b^2 |
This formula can be obtained directly by expanding the left hand side
\displaystyle (a+b)(a-b)
= a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b) = a^2 -ab+ab-b^2 = a^2 -b^2\mbox{.} |
Example 7
- \displaystyle (x-4y)(x+4y) = x^2 -(4y)^2 = x^2 -16y^2
- \displaystyle (x^2+2x)(x^2-2x)= (x^2)^2 - (2x)^2 = x^4 -4x^2
- \displaystyle (y+3)(3-y)= (3+y)(3-y) = 3^2 -y^2 = 9-y^2
- \displaystyle x^4 -16 = (x^2)^2 -4^2 = (x^2+4)(x^2-4)
= (x^2+4)(x^2-2^2)
\displaystyle \phantom{x^4-16}{}=(x^2+4)(x+2)(x-2)
Rational expressions
Working with fractions containing algebraic expressions is very similar to carrying out ordinary calculations with fractions.
Multiplication and division of algebraic fractions follow the same rules that apply to ordinary fractions,
\displaystyle \frac{a}{b} \cdot \frac{c}{d}
= \frac{a\, c}{b\, d} \quad \mbox{and} \quad \frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}} = \frac{a\, d}{b\, c} \; \mbox{.} |
Example 8
- \displaystyle \frac{3x}{x-y} \times \frac{4x}{2x+y} = \frac{3x\times 4x}{(x-y)\times(2x+y)} = \frac{12x^2}{(x-y)(2x+y)}
- \displaystyle \frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} = \frac{a^2}{x(x+1)}
- \displaystyle \frac{\displaystyle \frac{x}{(x+1)^2}}{\displaystyle \frac{x-2}{x-1}} = \frac{x(x-1)}{(x-2)(x+1)^2}
A fractional expression can have its numerator and denominator multiplied by the same factor
\displaystyle \frac{x+2}{x+1}
= \frac{(x+2)(x+3)}{(x+1)(x+3)} = \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)} = \dots |
We can cancel factors that the numerator and denominator have in common
\displaystyle \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
= \frac{(x+2)(x+4)}{(x+1)(x+4)} = \frac{x+2}{x+1} \mbox{.} |
Example 9
- \displaystyle \frac{x}{x+1} = \frac{x}{x+1} \cdot \frac{x+2}{x+2} = \frac{x(x+2)}{(x+1)(x+2)}
- \displaystyle \frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}
- \displaystyle \frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} = \left\{\,\text{Difference of two squares}\,\right\} = \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} = \frac{x-y}{x+2}
When fractional expressions are added or subtracted they may need to be placed over a common denominator.
\displaystyle \frac{1}{x} - \frac{1}{x-1}
= \frac{1}{x} \times\frac{x-1}{x-1} - \frac{1}{x-1} \times\frac{x}{x} = \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)} = \frac{x-1-x}{x(x-1)} = \frac{-1}{x(x-1)} \; \mbox{.} |
As with ordinary fractions, it's possible to find a common denominator by simply multiplying the two denominators, but it is better to find the smallest, simplest expression that both denominators go into: the lowest common denominator or LCD.
Example 10
- \displaystyle \frac{1}{x+1} + \frac{1}{x+2}\quad has \displaystyle \ \text{LCD}
= (x+1)(x+2)
Convert the first term using \displaystyle (x+2) and the second term using \displaystyle (x+1)\displaystyle \begin{align*} \frac{1}{x+1} + \frac{1}{x+2} &= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt] &= \frac{x+2+x+1}{(x+1)(x+2)} = \frac{2x+3}{(x+1)(x+2)}\:\mbox{.} \end{align*}
- \displaystyle \frac{1}{x} + \frac{1}{x^2}\quad has \displaystyle \ \text{LCD}
= x^2
We only need to convert the first term to get a common denominator\displaystyle \frac{1}{x} + \frac{1}{x^2} = \frac{x}{x^2} + \frac{1}{x^2} = \frac{x+1}{x^2}\,\mbox{.}
- \displaystyle \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad has \displaystyle \
\text{LCD}= x^2(x+1)^2(x+2)
The first term is converted using \displaystyle x(x+2) while the other term is converted using \displaystyle (x+1)^2\displaystyle \begin{align*} \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)} &= \frac{x(x+2)}{x^2(x+1)^2(x+2)} - \frac{(x+1)^2}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{x^2+2x}{x^2(x+1)^2(x+2)} - \frac{x^2+2x+1}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{x^2+2x-(x^2+2x+1)}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{x^2+2x-x^2-2x-1}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.} \end{align*}
- \displaystyle \frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad has \displaystyle \
\text{LCD}=x(x-1)(x+1)
We must convert all the terms so that they have the common denominator \displaystyle x(x-1)(x+1)\displaystyle \begin{align*} \frac{x}{x+1} - \frac{1}{x(x-1)} -1 &= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)} - \frac{x(x-1)(x+1)}{x(x-1)(x+1)}\\[4pt] &= \frac{x^3-x^2}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)} - \frac{x^3 -x}{x(x-1)(x+1)}\\[4pt] &= \frac{x^3-x^2 -(x+1) -(x^3-x)}{x(x-1)(x+1)}\\[4pt] &= \frac{x^3-x^2 -x-1 -x^3+x}{x(x-1)(x+1)}\\[4pt] &= \frac{-x^2-1}{x(x-1)(x+1)}\,\mbox{.} \end{align*}
To simplify large expressions it is often necessary both to cancel factors and to multiply numerators and denominators by factors. Where possible, therefore, we should keep expressions in a factorised form, and not expand expressions we will later need to factorise again.
Example 11
- \displaystyle \frac{1}{x-2} - \frac{4}{x^2-4}
= \frac{1}{x-2} - \frac{4}{(x+2)(x-2)}
= \left\{\,\mbox{MGN}
= (x+2)(x-2)\,\right\}
\displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2}{(x+2)(x-2)} - \frac{4}{(x+2)(x-2)}
\displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2 -4}{(x+2)(x-2)} = \frac{x-2}{(x+2)(x-2)} = \frac{1}{x+2} - \displaystyle \frac{x + \displaystyle \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2}{x} + \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2+1}{x}}{x^2+1} = \frac{x^2+1}{x(x^2+1)} = \frac{1}{x}
- \displaystyle \frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}
= \frac{\displaystyle \frac{y^2}{x^2y^2} - \frac{x^2}{x^2y^2}}{x+y}
= \frac{\displaystyle \frac{y^2-x^2}{x^2y^2}}{x+y}
= \frac{y^2-x^2}{x^2y^2(x+y)}
\displaystyle \phantom{\smash{\frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}}}{} = \frac{(y+x)(y-x)}{x^2y^2(x+y)} = \frac{y-x}{x^2y^2}
Study advice
The basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that...
If you make a mistake somewhere the rest of the calculation will be wrong, so be careful!
Use many intermediate steps. If you are unsure of a calculation do it in many small steps rather than one big step.
Do not expand unnecessarily. You later may be forced to factorise what you earlier expanded.
Reviews
Learn more about algebra in the English Wikipedia
Understanding Algebra - English text on the Web
Useful web sites