2.1 Algebraic expressions
From Förberedande kurs i matematik 1
(Idiom, localisation of terminology and notation) |
|||
(15 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{ | + | {{Selected tab|[[2.1 Algebraic expressions|Theory]]}} |
- | {{ | + | {{Not selected tab|[[2.1 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Contents:''' |
* Distributive law | * Distributive law | ||
- | * | + | * Expansion and factorisation |
*Difference of two squares | *Difference of two squares | ||
- | * Rational | + | * Rational expressions |
}} | }} | ||
Line 18: | Line 18: | ||
'''Learning outcomes:''' | '''Learning outcomes:''' | ||
- | After this section | + | After this section you will have learned how to: |
- | *Simplify | + | *Simplify complicated algebraic expressions. |
- | *Factorise expressions | + | *Factorise expressions, including perfect squares and the difference of two squares. |
- | *Expand expressions | + | *Expand expressions, including perfect squares and the difference of two squares. |
}} | }} | ||
== Distributive Law == | == Distributive Law == | ||
- | [[Bild:miniräknare_skämt.gif|right]] | ||
The distributive law specifies how to multiply a bracketed expression by a factor. | The distributive law specifies how to multiply a bracketed expression by a factor. | ||
- | <center>{{:2.1 - | + | <center>{{:2.1 - Figure - The distributive law}}</center> |
<div class="exempel"> | <div class="exempel"> | ||
Line 39: | Line 38: | ||
<li><math>2(a-b) = 2a -2b</math></li> | <li><math>2(a-b) = 2a -2b</math></li> | ||
<li><math>x \left(\frac{1}{x} + \frac{1}{x^2} \right) | <li><math>x \left(\frac{1}{x} + \frac{1}{x^2} \right) | ||
- | = x\ | + | = x\times \frac{1}{x} + x \times \frac{1}{x^2} |
= \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} | = \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} | ||
= 1 + \frac{1}{x}</math></li> | = 1 + \frac{1}{x}</math></li> | ||
Line 47: | Line 46: | ||
</div> | </div> | ||
- | Using the distributive law | + | Using the distributive law we can also see how to tackle |
a minus sign in front of a bracketed expression. | a minus sign in front of a bracketed expression. | ||
- | The rule says that | + | The rule says that a minus sign in front of a bracket can be |
- | eliminated if all the terms inside the brackets | + | eliminated if all the terms inside the brackets switch signs. |
<div class="exempel"> | <div class="exempel"> | ||
Line 56: | Line 55: | ||
<ol type="a"> | <ol type="a"> | ||
- | <li><math>-(x+y) = (-1) \ | + | <li><math>-(x+y) = (-1) \times (x+y) = (-1)x + (-1)y = -x-y</math></li> |
- | <li><math>-(x^2-x) = (-1) \ | + | <li><math>-(x^2-x) = (-1) \times (x^2-x) = (-1)x^2 -(-1)x |
= -x^2 +x</math><br/> | = -x^2 +x</math><br/> | ||
- | where we have in the final step used <math>-(-1)x = (-1)(-1)x = 1\ | + | where we have in the final step used <math>-(-1)x = (-1)(-1)x = 1\times x = x\,\mbox{.}</math></li> |
- | <li><math>-(x+y-y^3) = (-1)\ | + | <li><math>-(x+y-y^3) = (-1)\times (x+y-y^3) = (-1)\times x |
- | + (-1) \ | + | + (-1) \times y -(-1)\times y^3</math><br/> |
<math>\phantom{-(x+y-y^3)}{} = -x-y+y^3</math></li> | <math>\phantom{-(x+y-y^3)}{} = -x-y+y^3</math></li> | ||
<li><math>x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2</math><br/> | <li><math>x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2</math><br/> | ||
Line 68: | Line 67: | ||
</div> | </div> | ||
- | If the distributive law is applied in | + | Applying the distributive law this way round - converting a product of factors into a sum of terms - is called ''expanding''. If the distributive law is applied in reverse we say we “factorise” the expression. We usually want to factorise as thoroughly as possible, by |
- | + | identifying the highet factor shared by all the terms. | |
<div class="exempel"> | <div class="exempel"> | ||
Line 75: | Line 74: | ||
<ol type="a"> | <ol type="a"> | ||
- | <li><math>3x +9y = 3x + 3\ | + | <li><math>3x +9y = 3x + 3\times 3y = 3(x+3y)</math></li> |
- | <li><math>xy + y^2 = xy + y\ | + | <li><math>xy + y^2 = xy + y\times y = y(x+y)</math></li> |
- | <li><math>2x^2 -4x = 2x\ | + | <li><math>2x^2 -4x = 2x\times x - 2\times 2\times x = 2x(x-2)</math></li> |
<li><math>\frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1</math></li> | <li><math>\frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1</math></li> | ||
</ol> | </ol> | ||
Line 83: | Line 82: | ||
- | == Squaring | + | == Squaring == |
- | + | On occasions the distributive law has to be used repeatedly to deal with larger expressions. | |
If we consider | If we consider | ||
- | {{ | + | {{Displayed math||<math>(a+b)(c+d)</math>}} |
- | and regard <math>a+b</math> as a factor that multiplies the bracketed expression(c+d) we get | + | and regard <math>a+b</math> as a factor that multiplies the bracketed expression <math>(c+d)</math> we get |
- | {{ | + | {{Displayed math||<math>\eqalign{ |
\bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d) | \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d) | ||
&= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c | &= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c | ||
Line 99: | Line 98: | ||
&= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}} | &= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}} | ||
- | Then the <math>c</math> and the <math>d</math>are multiplied into their respective brackets, | + | Then the <math>c</math> and the <math>d</math> are multiplied into their respective brackets, |
- | {{ | + | {{Displayed math||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}} |
A mnemonic for this formula is: | A mnemonic for this formula is: | ||
- | <center>{{:2.1 - | + | <center>{{:2.1 - Figure - The distributive law twice}}</center> |
<div class="exempel"> | <div class="exempel"> | ||
Line 111: | Line 110: | ||
<ol type="a"> | <ol type="a"> | ||
- | <li><math>(x+1)(x-2) = x\ | + | <li><math>(x+1)(x-2) = x\times x + x \times (-2) + 1 \times x + 1 \times (-2) |
= x^2 -2x+x-2</math><br/> | = x^2 -2x+x-2</math><br/> | ||
<math>\phantom{(x+1)(x-2)}{}=x^2 -x-2</math></li> | <math>\phantom{(x+1)(x-2)}{}=x^2 -x-2</math></li> | ||
- | <li><math>3(x-y)(2x+1) = 3(x\ | + | <li><math>3(x-y)(2x+1) = 3(x\times 2x + x\times 1 - y \times 2x - y \times 1) |
= 3(2x^2 +x-2xy-y)</math><br/> | = 3(2x^2 +x-2xy-y)</math><br/> | ||
<math>\phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y</math></li> | <math>\phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y</math></li> | ||
- | <li><math>(1-x)(2-x) = 1\ | + | <li><math>(1-x)(2-x) = 1\times 2 + 1 \times (-x) -x\times 2 - x\times (-x) |
= 2-x-2x+x^2</math><br/> | = 2-x-2x+x^2</math><br/> | ||
<math>\phantom{(1-x)(2-x)}{}=2-3x+x^2</math> | <math>\phantom{(1-x)(2-x)}{}=2-3x+x^2</math> | ||
- | + | where we have used <math>-x\times (-x) = (-1)x \times (-1)x = (-1)^2 x^2 = 1\times x^2 = x^2</math>. | |
</ol> | </ol> | ||
</div> | </div> | ||
- | Two important special cases of the above formula | + | Two important special cases of the above formula are when <math>a+b</math> and <math>c+d</math> are the same expression |
<div class="regel"> | <div class="regel"> | ||
- | '''Squaring rules ''' | ||
- | {{Fristående formel||<math>(a+b)^2 = a^2 +2ab + b^2</math>}} | ||
- | {{Fristående formel||<math>(a-b)^2 = a^2 -2ab + b^2</math>}} | ||
- | </div> | ||
- | + | {{Displayed math||<math>(a+b)^2 = a^2 +2ab + b^2</math>}} | |
+ | {{Displayed math||<math>(a-b)^2 = a^2 -2ab + b^2</math>}} | ||
+ | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
Line 138: | Line 135: | ||
<ol type="a"> | <ol type="a"> | ||
- | <li><math>(x+2)^2 = x^2 + 2\ | + | <li><math>(x+2)^2 = x^2 + 2\times 2x+ 2^2 = x^2 +4x +4</math></li> |
- | <li><math>(-x+3)^2 = (-x)^2 + 2\ | + | <li><math>(-x+3)^2 = (-x)^2 + 2\times 3(-x) + 3^2 = x^2 -6x +9</math> <br> |
- | : where <math>(-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \ | + | : where <math>(-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \times x^2 = x^2\,\mbox{.}</math></li> |
- | <li><math>(x^2 -4)^2 = (x^2)^2 - 2 \ | + | <li><math>(x^2 -4)^2 = (x^2)^2 - 2 \times 4x^2 + 4^2 |
= x^4 -8x^2 +16</math></li> | = x^4 -8x^2 +16</math></li> | ||
<li><math>(x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)</math><br/> | <li><math>(x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)</math><br/> | ||
Line 149: | Line 146: | ||
<math>\phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8</math></li> | <math>\phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8</math></li> | ||
<li><math>(x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)</math><br/> | <li><math>(x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)</math><br/> | ||
- | <math>\phantom{(x-2)^3}{}=x \ | + | <math>\phantom{(x-2)^3}{}=x \times x^2 + x\times (-4x) + x\times 4 |
- | - 2\ | + | - 2\times x^2 - 2 \times (-4x)-2 \times 4</math><br/> |
<math>\phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 | <math>\phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 | ||
= x^3-6x^2 + 12x -8</math></li> | = x^3-6x^2 + 12x -8</math></li> | ||
Line 156: | Line 153: | ||
</div> | </div> | ||
- | + | These rules are also used in the reverse direction to factorise expressions. | |
<div class="exempel"> | <div class="exempel"> | ||
Line 163: | Line 160: | ||
<ol type="a"> | <ol type="a"> | ||
<li><math>x^2 + 2x+ 1 = (x+1)^2</math></li> | <li><math>x^2 + 2x+ 1 = (x+1)^2</math></li> | ||
- | <li><math>x^6-4x^3 +4 = (x^3)^2 - 2\ | + | <li><math>x^6-4x^3 +4 = (x^3)^2 - 2\times 2x^3 +2^2 = (x^3-2)^2</math></li> |
- | <li><math>x^2 +x + \frac{1}{4} = x^2 + 2\ | + | <li><math>x^2 +x + \frac{1}{4} = x^2 + 2\times\frac{1}{2}x |
+ \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2</math></li> | + \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2</math></li> | ||
</ol> | </ol> | ||
Line 175: | Line 172: | ||
<div class="regel"> | <div class="regel"> | ||
- | ''' | + | '''Difference of two squares:''' |
- | {{ | + | {{Displayed math||<math>(a+b)(a-b) = a^2 -b^2</math>}} |
</div> | </div> | ||
This formula can be obtained directly by expanding the left hand side | This formula can be obtained directly by expanding the left hand side | ||
- | {{ | + | {{Displayed math||<math>(a+b)(a-b) |
= a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b) | = a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b) | ||
= a^2 -ab+ab-b^2 | = a^2 -ab+ab-b^2 | ||
Line 202: | Line 199: | ||
== Rational expressions== | == Rational expressions== | ||
- | + | Working with fractions containing algebraic expressions is very similar to carrying out ordinary calculations with fractions. | |
- | Multiplication and division of | + | Multiplication and division of algebraic fractions follow the same rules that apply to ordinary fractions, |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math> \frac{a}{b} \cdot \frac{c}{d} |
- | = \frac{a\ | + | = \frac{a\, c}{b\, d} |
- | \quad \mbox{ | + | \quad \mbox{and} \quad |
\frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}} | \frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}} | ||
- | = \frac{a\ | + | = \frac{a\, d}{b\, c} \; \mbox{.}</math>}} |
</div> | </div> | ||
Line 218: | Line 215: | ||
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\frac{3x}{x-y} \ | + | <li><math>\frac{3x}{x-y} \times \frac{4x}{2x+y} |
- | = \frac{3x\ | + | = \frac{3x\times 4x}{(x-y)\times(2x+y)} |
= \frac{12x^2}{(x-y)(2x+y)}</math></li> | = \frac{12x^2}{(x-y)(2x+y)}</math></li> | ||
<li><math>\frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} | <li><math>\frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} | ||
Line 228: | Line 225: | ||
</div> | </div> | ||
- | A fractional expression can have its numerator and denominator multiplied by the | + | A fractional expression can have its numerator and denominator multiplied by the same factor |
- | {{ | + | {{Displayed math||<math>\frac{x+2}{x+1} |
= \frac{(x+2)(x+3)}{(x+1)(x+3)} | = \frac{(x+2)(x+3)}{(x+1)(x+3)} | ||
= \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)} | = \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)} | ||
= \dots</math>}} | = \dots</math>}} | ||
- | + | We can cancel factors that the numerator and denominator have in common | |
- | {{ | + | {{Displayed math||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) } |
= \frac{(x+2)(x+4)}{(x+1)(x+4)} | = \frac{(x+2)(x+4)}{(x+1)(x+4)} | ||
= \frac{x+2}{x+1} \mbox{.}</math>}} | = \frac{x+2}{x+1} \mbox{.}</math>}} | ||
Line 248: | Line 245: | ||
<li><math>\frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}</math></li> | <li><math>\frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}</math></li> | ||
<li><math>\frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} | <li><math>\frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} | ||
- | = \left\{\,\text{ | + | = \left\{\,\text{Difference of two squares}\,\right\} |
= \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} | = \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} | ||
= \frac{x-y}{x+2}</math></li> | = \frac{x-y}{x+2}</math></li> | ||
Line 254: | Line 251: | ||
</div> | </div> | ||
- | When fractional expressions are added or subtracted | + | When fractional expressions are added or subtracted they may need to be placed over a common denominator. |
- | + | {{Displayed math||<math>\frac{1}{x} - \frac{1}{x-1} | |
- | {{ | + | = \frac{1}{x} \times\frac{x-1}{x-1} - \frac{1}{x-1} \times\frac{x}{x} |
- | = \frac{1}{x} \ | + | |
= \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)} | = \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)} | ||
= \frac{x-1-x}{x(x-1)} | = \frac{x-1-x}{x(x-1)} | ||
= \frac{-1}{x(x-1)} \; \mbox{.}</math>}} | = \frac{-1}{x(x-1)} \; \mbox{.}</math>}} | ||
- | + | As with ordinary fractions, it's possible to find a common denominator by simply multiplying the two denominators, but it is better to find the smallest, simplest expression that both denominators go into: the lowest common denominator or LCD. | |
<div class="exempel"> | <div class="exempel"> | ||
Line 272: | Line 268: | ||
= (x+1)(x+2)</math> <br><br> | = (x+1)(x+2)</math> <br><br> | ||
Convert the first term using <math>(x+2)</math> and the second term using <math>(x+1)</math> | Convert the first term using <math>(x+2)</math> and the second term using <math>(x+1)</math> | ||
- | {{ | + | {{Displayed math||<math>\begin{align*} |
\frac{1}{x+1} + \frac{1}{x+2} | \frac{1}{x+1} + \frac{1}{x+2} | ||
&= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt] | &= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt] | ||
Line 281: | Line 277: | ||
= x^2</math><br><br> | = x^2</math><br><br> | ||
We only need to convert the first term to get a common denominator | We only need to convert the first term to get a common denominator | ||
- | {{ | + | {{Displayed math||<math>\frac{1}{x} + \frac{1}{x^2} |
= \frac{x}{x^2} + \frac{1}{x^2} | = \frac{x}{x^2} + \frac{1}{x^2} | ||
= \frac{x+1}{x^2}\,\mbox{.}</math>}}</li> | = \frac{x+1}{x^2}\,\mbox{.}</math>}}</li> | ||
Line 287: | Line 283: | ||
\text{LCD}= x^2(x+1)^2(x+2)</math><br><br> | \text{LCD}= x^2(x+1)^2(x+2)</math><br><br> | ||
The first term is converted using <math>x(x+2)</math> while the other term is converted using <math>(x+1)^2</math> | The first term is converted using <math>x(x+2)</math> while the other term is converted using <math>(x+1)^2</math> | ||
- | {{ | + | {{Displayed math||<math>\begin{align*} |
\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)} | \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)} | ||
&= \frac{x(x+2)}{x^2(x+1)^2(x+2)} | &= \frac{x(x+2)}{x^2(x+1)^2(x+2)} | ||
Line 298: | Line 294: | ||
<li><math>\frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad</math> has <math>\ | <li><math>\frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad</math> has <math>\ | ||
\text{LCD}=x(x-1)(x+1)</math><br><br> | \text{LCD}=x(x-1)(x+1)</math><br><br> | ||
- | + | We must convert all the terms so that they have the common denominator <math>x(x-1)(x+1)</math> | |
- | {{ | + | {{Displayed math||<math>\begin{align*} |
\frac{x}{x+1} - \frac{1}{x(x-1)} -1 | \frac{x}{x+1} - \frac{1}{x(x-1)} -1 | ||
&= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)} | &= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)} | ||
Line 312: | Line 308: | ||
</div> | </div> | ||
- | To simplify large expressions | + | To simplify large expressions it is often necessary both to cancel factors and to multiply numerators and denominators by factors. Where possible, therefore, we should keep expressions in a factorised form, and not expand expressions we will later need to factorise again. |
- | + | ||
<div class="exempel"> | <div class="exempel"> | ||
Line 346: | Line 341: | ||
- | [[2.1 | + | [[2.1 Exercises|Exercises]] |
Line 353: | Line 348: | ||
'''Study advice''' | '''Study advice''' | ||
- | '''The basic and final tests'' | + | '''The basic and final tests''' |
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | ||
- | '''Keep in mind that | + | '''Keep in mind that...''' |
- | + | If you make a mistake somewhere the rest of the calculation will be wrong, so be careful! | |
- | Use many intermediate steps . If you are unsure of a calculation do it in many small steps rather than one big step. | + | Use many intermediate steps. If you are unsure of a calculation do it in many small steps rather than one big step. |
- | Do not expand unnecessarily. You later may be forced to | + | Do not expand unnecessarily. You later may be forced to factorise what you earlier expanded. |
Line 375: | Line 370: | ||
- | ''' | + | '''Useful web sites''' |
</div> | </div> |
Current revision
Theory | Exercises |
Contents:
- Distributive law
- Expansion and factorisation
- Difference of two squares
- Rational expressions
Learning outcomes:
After this section you will have learned how to:
- Simplify complicated algebraic expressions.
- Factorise expressions, including perfect squares and the difference of two squares.
- Expand expressions, including perfect squares and the difference of two squares.
Distributive Law
The distributive law specifies how to multiply a bracketed expression by a factor.
Example 1
- \displaystyle 4(x+y) = 4x + 4y
- \displaystyle 2(a-b) = 2a -2b
- \displaystyle x \left(\frac{1}{x} + \frac{1}{x^2} \right) = x\times \frac{1}{x} + x \times \frac{1}{x^2} = \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} = 1 + \frac{1}{x}
- \displaystyle a(x+y+z) = ax + ay + az
Using the distributive law we can also see how to tackle a minus sign in front of a bracketed expression. The rule says that a minus sign in front of a bracket can be eliminated if all the terms inside the brackets switch signs.
Example 2
- \displaystyle -(x+y) = (-1) \times (x+y) = (-1)x + (-1)y = -x-y
- \displaystyle -(x^2-x) = (-1) \times (x^2-x) = (-1)x^2 -(-1)x
= -x^2 +x
where we have in the final step used \displaystyle -(-1)x = (-1)(-1)x = 1\times x = x\,\mbox{.} - \displaystyle -(x+y-y^3) = (-1)\times (x+y-y^3) = (-1)\times x
+ (-1) \times y -(-1)\times y^3
\displaystyle \phantom{-(x+y-y^3)}{} = -x-y+y^3 - \displaystyle x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2
\displaystyle \phantom{x^2-2x-(3x+2)}{} = x^2 -5x -2
Applying the distributive law this way round - converting a product of factors into a sum of terms - is called expanding. If the distributive law is applied in reverse we say we “factorise” the expression. We usually want to factorise as thoroughly as possible, by identifying the highet factor shared by all the terms.
Example 3
- \displaystyle 3x +9y = 3x + 3\times 3y = 3(x+3y)
- \displaystyle xy + y^2 = xy + y\times y = y(x+y)
- \displaystyle 2x^2 -4x = 2x\times x - 2\times 2\times x = 2x(x-2)
- \displaystyle \frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1
Squaring
On occasions the distributive law has to be used repeatedly to deal with larger expressions. If we consider
\displaystyle (a+b)(c+d) |
and regard \displaystyle a+b as a factor that multiplies the bracketed expression \displaystyle (c+d) we get
\displaystyle \eqalign{
\bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d) &= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c + \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,d\mbox{,}\cr (a+b)\,(c+d) &= (a+b)\,c + (a+b)\,d\mbox{.}} |
Then the \displaystyle c and the \displaystyle d are multiplied into their respective brackets,
\displaystyle (a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.} |
A mnemonic for this formula is:
Example 4
- \displaystyle (x+1)(x-2) = x\times x + x \times (-2) + 1 \times x + 1 \times (-2)
= x^2 -2x+x-2
\displaystyle \phantom{(x+1)(x-2)}{}=x^2 -x-2 - \displaystyle 3(x-y)(2x+1) = 3(x\times 2x + x\times 1 - y \times 2x - y \times 1)
= 3(2x^2 +x-2xy-y)
\displaystyle \phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y - \displaystyle (1-x)(2-x) = 1\times 2 + 1 \times (-x) -x\times 2 - x\times (-x)
= 2-x-2x+x^2
\displaystyle \phantom{(1-x)(2-x)}{}=2-3x+x^2 where we have used \displaystyle -x\times (-x) = (-1)x \times (-1)x = (-1)^2 x^2 = 1\times x^2 = x^2.
Two important special cases of the above formula are when \displaystyle a+b and \displaystyle c+d are the same expression
\displaystyle (a+b)^2 = a^2 +2ab + b^2 |
\displaystyle (a-b)^2 = a^2 -2ab + b^2 |
Example 5
- \displaystyle (x+2)^2 = x^2 + 2\times 2x+ 2^2 = x^2 +4x +4
- \displaystyle (-x+3)^2 = (-x)^2 + 2\times 3(-x) + 3^2 = x^2 -6x +9
- where \displaystyle (-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \times x^2 = x^2\,\mbox{.}
- \displaystyle (x^2 -4)^2 = (x^2)^2 - 2 \times 4x^2 + 4^2 = x^4 -8x^2 +16
- \displaystyle (x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)
\displaystyle \phantom{(x+1)^2-(x-1)^2}{}= x^2 +2x +1 -x^2 + 2x-1
\displaystyle \phantom{(x+1)^2-(x-1)^2}{} = 2x+2x = 4x - \displaystyle (2x+4)(x+2) = 2(x+2)(x+2) = 2(x+2)^2 = 2(x^2 + 4x+ 4)
\displaystyle \phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8 - \displaystyle (x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)
\displaystyle \phantom{(x-2)^3}{}=x \times x^2 + x\times (-4x) + x\times 4 - 2\times x^2 - 2 \times (-4x)-2 \times 4
\displaystyle \phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 = x^3-6x^2 + 12x -8
These rules are also used in the reverse direction to factorise expressions.
Example 6
- \displaystyle x^2 + 2x+ 1 = (x+1)^2
- \displaystyle x^6-4x^3 +4 = (x^3)^2 - 2\times 2x^3 +2^2 = (x^3-2)^2
- \displaystyle x^2 +x + \frac{1}{4} = x^2 + 2\times\frac{1}{2}x + \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2
Difference of two squares
A third special case of the first formula in the last section is the difference of two squares rule.
Difference of two squares:
\displaystyle (a+b)(a-b) = a^2 -b^2 |
This formula can be obtained directly by expanding the left hand side
\displaystyle (a+b)(a-b)
= a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b) = a^2 -ab+ab-b^2 = a^2 -b^2\mbox{.} |
Example 7
- \displaystyle (x-4y)(x+4y) = x^2 -(4y)^2 = x^2 -16y^2
- \displaystyle (x^2+2x)(x^2-2x)= (x^2)^2 - (2x)^2 = x^4 -4x^2
- \displaystyle (y+3)(3-y)= (3+y)(3-y) = 3^2 -y^2 = 9-y^2
- \displaystyle x^4 -16 = (x^2)^2 -4^2 = (x^2+4)(x^2-4)
= (x^2+4)(x^2-2^2)
\displaystyle \phantom{x^4-16}{}=(x^2+4)(x+2)(x-2)
Rational expressions
Working with fractions containing algebraic expressions is very similar to carrying out ordinary calculations with fractions.
Multiplication and division of algebraic fractions follow the same rules that apply to ordinary fractions,
\displaystyle \frac{a}{b} \cdot \frac{c}{d}
= \frac{a\, c}{b\, d} \quad \mbox{and} \quad \frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}} = \frac{a\, d}{b\, c} \; \mbox{.} |
Example 8
- \displaystyle \frac{3x}{x-y} \times \frac{4x}{2x+y} = \frac{3x\times 4x}{(x-y)\times(2x+y)} = \frac{12x^2}{(x-y)(2x+y)}
- \displaystyle \frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} = \frac{a^2}{x(x+1)}
- \displaystyle \frac{\displaystyle \frac{x}{(x+1)^2}}{\displaystyle \frac{x-2}{x-1}} = \frac{x(x-1)}{(x-2)(x+1)^2}
A fractional expression can have its numerator and denominator multiplied by the same factor
\displaystyle \frac{x+2}{x+1}
= \frac{(x+2)(x+3)}{(x+1)(x+3)} = \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)} = \dots |
We can cancel factors that the numerator and denominator have in common
\displaystyle \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
= \frac{(x+2)(x+4)}{(x+1)(x+4)} = \frac{x+2}{x+1} \mbox{.} |
Example 9
- \displaystyle \frac{x}{x+1} = \frac{x}{x+1} \cdot \frac{x+2}{x+2} = \frac{x(x+2)}{(x+1)(x+2)}
- \displaystyle \frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}
- \displaystyle \frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} = \left\{\,\text{Difference of two squares}\,\right\} = \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} = \frac{x-y}{x+2}
When fractional expressions are added or subtracted they may need to be placed over a common denominator.
\displaystyle \frac{1}{x} - \frac{1}{x-1}
= \frac{1}{x} \times\frac{x-1}{x-1} - \frac{1}{x-1} \times\frac{x}{x} = \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)} = \frac{x-1-x}{x(x-1)} = \frac{-1}{x(x-1)} \; \mbox{.} |
As with ordinary fractions, it's possible to find a common denominator by simply multiplying the two denominators, but it is better to find the smallest, simplest expression that both denominators go into: the lowest common denominator or LCD.
Example 10
- \displaystyle \frac{1}{x+1} + \frac{1}{x+2}\quad has \displaystyle \ \text{LCD}
= (x+1)(x+2)
Convert the first term using \displaystyle (x+2) and the second term using \displaystyle (x+1)\displaystyle \begin{align*} \frac{1}{x+1} + \frac{1}{x+2} &= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt] &= \frac{x+2+x+1}{(x+1)(x+2)} = \frac{2x+3}{(x+1)(x+2)}\:\mbox{.} \end{align*}
- \displaystyle \frac{1}{x} + \frac{1}{x^2}\quad has \displaystyle \ \text{LCD}
= x^2
We only need to convert the first term to get a common denominator\displaystyle \frac{1}{x} + \frac{1}{x^2} = \frac{x}{x^2} + \frac{1}{x^2} = \frac{x+1}{x^2}\,\mbox{.}
- \displaystyle \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad has \displaystyle \
\text{LCD}= x^2(x+1)^2(x+2)
The first term is converted using \displaystyle x(x+2) while the other term is converted using \displaystyle (x+1)^2\displaystyle \begin{align*} \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)} &= \frac{x(x+2)}{x^2(x+1)^2(x+2)} - \frac{(x+1)^2}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{x^2+2x}{x^2(x+1)^2(x+2)} - \frac{x^2+2x+1}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{x^2+2x-(x^2+2x+1)}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{x^2+2x-x^2-2x-1}{x^2(x+1)^2(x+2)}\\[4pt] &= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.} \end{align*}
- \displaystyle \frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad has \displaystyle \
\text{LCD}=x(x-1)(x+1)
We must convert all the terms so that they have the common denominator \displaystyle x(x-1)(x+1)\displaystyle \begin{align*} \frac{x}{x+1} - \frac{1}{x(x-1)} -1 &= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)} - \frac{x(x-1)(x+1)}{x(x-1)(x+1)}\\[4pt] &= \frac{x^3-x^2}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)} - \frac{x^3 -x}{x(x-1)(x+1)}\\[4pt] &= \frac{x^3-x^2 -(x+1) -(x^3-x)}{x(x-1)(x+1)}\\[4pt] &= \frac{x^3-x^2 -x-1 -x^3+x}{x(x-1)(x+1)}\\[4pt] &= \frac{-x^2-1}{x(x-1)(x+1)}\,\mbox{.} \end{align*}
To simplify large expressions it is often necessary both to cancel factors and to multiply numerators and denominators by factors. Where possible, therefore, we should keep expressions in a factorised form, and not expand expressions we will later need to factorise again.
Example 11
- \displaystyle \frac{1}{x-2} - \frac{4}{x^2-4}
= \frac{1}{x-2} - \frac{4}{(x+2)(x-2)}
= \left\{\,\mbox{MGN}
= (x+2)(x-2)\,\right\}
\displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2}{(x+2)(x-2)} - \frac{4}{(x+2)(x-2)}
\displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2 -4}{(x+2)(x-2)} = \frac{x-2}{(x+2)(x-2)} = \frac{1}{x+2} - \displaystyle \frac{x + \displaystyle \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2}{x} + \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2+1}{x}}{x^2+1} = \frac{x^2+1}{x(x^2+1)} = \frac{1}{x}
- \displaystyle \frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}
= \frac{\displaystyle \frac{y^2}{x^2y^2} - \frac{x^2}{x^2y^2}}{x+y}
= \frac{\displaystyle \frac{y^2-x^2}{x^2y^2}}{x+y}
= \frac{y^2-x^2}{x^2y^2(x+y)}
\displaystyle \phantom{\smash{\frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}}}{} = \frac{(y+x)(y-x)}{x^2y^2(x+y)} = \frac{y-x}{x^2y^2}
Study advice
The basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that...
If you make a mistake somewhere the rest of the calculation will be wrong, so be careful!
Use many intermediate steps. If you are unsure of a calculation do it in many small steps rather than one big step.
Do not expand unnecessarily. You later may be forced to factorise what you earlier expanded.
Reviews
Learn more about algebra in the English Wikipedia
Understanding Algebra - English text on the Web
Useful web sites