2.1 Algebraic expressions

From Förberedande kurs i matematik 1

(Difference between revisions)
Jump to: navigation, search
m
Current revision (17:18, 30 December 2008) (edit) (undo)
(Idiom, localisation of terminology and notation)
 
(17 intermediate revisions not shown.)
Line 2: Line 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #797979" width="5px" |  
| style="border-bottom:1px solid #797979" width="5px" |  
-
{{Mall:Vald flik|[[2.1 Algebraiska uttryck|Teori]]}}
+
{{Selected tab|[[2.1 Algebraic expressions|Theory]]}}
-
{{Mall:Ej vald flik|[[2.1 Övningar|Övningar]]}}
+
{{Not selected tab|[[2.1 Exercises|Exercises]]}}
| style="border-bottom:1px solid #797979" width="100%"|  
| style="border-bottom:1px solid #797979" width="100%"|  
|}
|}
{{Info|
{{Info|
-
'''Innehåll:'''
+
'''Contents:'''
-
*Distributiva lagen
+
* Distributive law
-
*Kvadreringsreglerna
+
* Expansion and factorisation
-
*Konjugatregeln
+
*Difference of two squares
-
*Rationella uttryck
+
* Rational expressions
}}
}}
{{Info|
{{Info|
-
'''Lärandemål:'''
+
'''Learning outcomes:'''
-
Efter detta avsnitt ska du ha lärt dig att:
+
After this section you will have learned how to:
-
*Förenkla komplicerade algebraiska uttryck.
+
*Simplify complicated algebraic expressions.
-
*Faktorisera uttryck med kvadreringsreglerna och konjugatregeln.
+
*Factorise expressions, including perfect squares and the difference of two squares.
-
*Utveckla uttryck med kvadreringsreglerna och konjugatregeln.
+
*Expand expressions, including perfect squares and the difference of two squares.
}}
}}
-
== Distributiva lagen ==
+
== Distributive Law ==
-
[[Bild:miniräknare_skämt.gif|right]]
+
The distributive law specifies how to multiply a bracketed expression by a factor.
-
Den distributiva lagen anger hur man multiplicerar in en faktor i en parentes.
+
-
<center>{{:2.1 - Figur - Distributiva lagen}}</center>
+
<center>{{:2.1 - Figure - The distributive law}}</center>
<div class="exempel">
<div class="exempel">
-
'''Exempel 1'''
+
''' Example 1'''
<ol type="a">
<ol type="a">
Line 39: Line 38:
<li><math>2(a-b) = 2a -2b</math></li>
<li><math>2(a-b) = 2a -2b</math></li>
<li><math>x \left(\frac{1}{x} + \frac{1}{x^2} \right)
<li><math>x \left(\frac{1}{x} + \frac{1}{x^2} \right)
-
= x\cdot \frac{1}{x} + x \cdot \frac{1}{x^2}
+
= x\times \frac{1}{x} + x \times \frac{1}{x^2}
= \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}}
= \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}}
= 1 + \frac{1}{x}</math></li>
= 1 + \frac{1}{x}</math></li>
Line 47: Line 46:
</div>
</div>
-
Med den distributiva lagen kan vi också förstå hur vi kan hantera minustecken framför parentesuttryck. Regeln säger att en parentes med ett minustecken framför kan tas bort om alla termer inuti parentesen byter tecken.
+
Using the distributive law we can also see how to tackle
 +
a minus sign in front of a bracketed expression.
 +
The rule says that a minus sign in front of a bracket can be
 +
eliminated if all the terms inside the brackets switch signs.
<div class="exempel">
<div class="exempel">
-
'''Exempel 2'''
+
''' Example 2'''
<ol type="a">
<ol type="a">
-
<li><math>-(x+y) = (-1) \cdot (x+y) = (-1)x + (-1)y = -x-y</math></li>
+
<li><math>-(x+y) = (-1) \times (x+y) = (-1)x + (-1)y = -x-y</math></li>
-
<li><math>-(x^2-x) = (-1) \cdot (x^2-x) = (-1)x^2 -(-1)x
+
<li><math>-(x^2-x) = (-1) \times (x^2-x) = (-1)x^2 -(-1)x
= -x^2 +x</math><br/>
= -x^2 +x</math><br/>
-
:där vi i sista ledet använt att <math>-(-1)x = (-1)(-1)x = 1\cdot x = x\,\mbox{.}</math></li>
+
where we have in the final step used <math>-(-1)x = (-1)(-1)x = 1\times x = x\,\mbox{.}</math></li>
-
<li><math>-(x+y-y^3) = (-1)\cdot (x+y-y^3) = (-1)\cdot x
+
<li><math>-(x+y-y^3) = (-1)\times (x+y-y^3) = (-1)\times x
-
+ (-1) \cdot y -(-1)\cdot y^3</math><br/>
+
+ (-1) \times y -(-1)\times y^3</math><br/>
<math>\phantom{-(x+y-y^3)}{} = -x-y+y^3</math></li>
<math>\phantom{-(x+y-y^3)}{} = -x-y+y^3</math></li>
<li><math>x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2</math><br/>
<li><math>x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2</math><br/>
Line 65: Line 67:
</div>
</div>
-
Om den distributiva lagen används baklänges så sägs vi faktorisera uttrycket. Ofta försöker man bryta ut en så stor faktor som möjligt.
+
Applying the distributive law this way round - converting a product of factors into a sum of terms - is called ''expanding''. If the distributive law is applied in reverse we say we “factorise” the expression. We usually want to factorise as thoroughly as possible, by
 +
identifying the highet factor shared by all the terms.
<div class="exempel">
<div class="exempel">
-
'''Exempel 3'''
+
''' Example 3'''
<ol type="a">
<ol type="a">
-
<li><math>3x +9y = 3x + 3\cdot 3y = 3(x+3y)</math></li>
+
<li><math>3x +9y = 3x + 3\times 3y = 3(x+3y)</math></li>
-
<li><math>xy + y^2 = xy + y\cdot y = y(x+y)</math></li>
+
<li><math>xy + y^2 = xy + y\times y = y(x+y)</math></li>
-
<li><math>2x^2 -4x = 2x\cdot x - 2\cdot 2\cdot x = 2x(x-2)</math></li>
+
<li><math>2x^2 -4x = 2x\times x - 2\times 2\times x = 2x(x-2)</math></li>
<li><math>\frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1</math></li>
<li><math>\frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1</math></li>
</ol>
</ol>
Line 79: Line 82:
-
== Kvadreringsreglerna ==
+
== Squaring ==
-
Den distributiva lagen behöver ibland användas upprepade gånger för att behandla större uttryck. Om vi betraktar
+
On occasions the distributive law has to be used repeatedly to deal with larger expressions.
 +
If we consider
-
{{Fristående formel||<math>(a+b)(c+d)</math>}}
+
{{Displayed math||<math>(a+b)(c+d)</math>}}
-
och ser <math>a+b</math> som en faktor som multipliceras in i parentesen (c+d) så får vi
+
and regard <math>a+b</math> as a factor that multiplies the bracketed expression <math>(c+d)</math> we get
-
{{Fristående formel||<math>\eqalign{
+
{{Displayed math||<math>\eqalign{
\bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d)
\bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d)
&= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c
&= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c
Line 94: Line 98:
&= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}}
&= (a+b)\,c + (a+b)\,d\mbox{.}}</math>}}
-
Sedan kan <math>c</math> och <math>d</math> multipliceras in i respektive parentes
+
Then the <math>c</math> and the <math>d</math> are multiplied into their respective brackets,
-
{{Fristående formel||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}}
+
{{Displayed math||<math>(a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}</math>}}
-
Ett minnesvärt sätt att sammanfatta formeln är:
+
A mnemonic for this formula is:
-
<center>{{:2.1 - Figur - Distributiva lagen två gånger}}</center>
+
<center>{{:2.1 - Figure - The distributive law twice}}</center>
<div class="exempel">
<div class="exempel">
-
'''Exempel 4'''
+
''' Example 4'''
<ol type="a">
<ol type="a">
-
<li><math>(x+1)(x-2) = x\cdot x + x \cdot (-2) + 1 \cdot x + 1 \cdot (-2)
+
<li><math>(x+1)(x-2) = x\times x + x \times (-2) + 1 \times x + 1 \times (-2)
= x^2 -2x+x-2</math><br/>
= x^2 -2x+x-2</math><br/>
<math>\phantom{(x+1)(x-2)}{}=x^2 -x-2</math></li>
<math>\phantom{(x+1)(x-2)}{}=x^2 -x-2</math></li>
-
<li><math>3(x-y)(2x+1) = 3(x\cdot 2x + x\cdot 1 - y \cdot 2x - y \cdot 1)
+
<li><math>3(x-y)(2x+1) = 3(x\times 2x + x\times 1 - y \times 2x - y \times 1)
= 3(2x^2 +x-2xy-y)</math><br/>
= 3(2x^2 +x-2xy-y)</math><br/>
<math>\phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y</math></li>
<math>\phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y</math></li>
-
<li><math>(1-x)(2-x) = 1\cdot 2 + 1 \cdot (-x) -x\cdot 2 - x\cdot (-x)
+
<li><math>(1-x)(2-x) = 1\times 2 + 1 \times (-x) -x\times 2 - x\times (-x)
= 2-x-2x+x^2</math><br/>
= 2-x-2x+x^2</math><br/>
<math>\phantom{(1-x)(2-x)}{}=2-3x+x^2</math>
<math>\phantom{(1-x)(2-x)}{}=2-3x+x^2</math>
-
:där vi använt att <math>-x\cdot (-x) = (-1)x \cdot (-1)x = (-1)^2 x^2 = 1\cdot x^2 = x^2</math>.
+
where we have used <math>-x\times (-x) = (-1)x \times (-1)x = (-1)^2 x^2 = 1\times x^2 = x^2</math>.
</ol>
</ol>
</div>
</div>
-
Två viktiga specialfall av ovanstående formel är när <math>a+b</math> och <math>c+d</math> är samma uttryck
+
Two important special cases of the above formula are when <math>a+b</math> and <math>c+d</math> are the same expression
<div class="regel">
<div class="regel">
-
'''Kvadreringsreglerna'''
 
-
{{Fristående formel||<math>(a+b)^2 = a^2 +2ab + b^2</math>}}
 
-
{{Fristående formel||<math>(a-b)^2 = a^2 -2ab + b^2</math>}}
 
-
</div>
 
-
Dessa formler kallas för första och andra kvadreringsregeln.
+
{{Displayed math||<math>(a+b)^2 = a^2 +2ab + b^2</math>}}
 +
{{Displayed math||<math>(a-b)^2 = a^2 -2ab + b^2</math>}}
 +
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 5'''
+
''' Example 5'''
<ol type="a">
<ol type="a">
-
<li><math>(x+2)^2 = x^2 + 2\cdot 2x+ 2^2 = x^2 +4x +4</math></li>
+
<li><math>(x+2)^2 = x^2 + 2\times 2x+ 2^2 = x^2 +4x +4</math></li>
-
<li><math>(-x+3)^2 = (-x)^2 + 2\cdot 3(-x) + 3^2 = x^2 -6x +9</math> <br>
+
<li><math>(-x+3)^2 = (-x)^2 + 2\times 3(-x) + 3^2 = x^2 -6x +9</math> <br>
-
:där <math>(-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \cdot x^2 = x^2\,\mbox{.}</math></li>
+
: where <math>(-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \times x^2 = x^2\,\mbox{.}</math></li>
-
<li><math>(x^2 -4)^2 = (x^2)^2 - 2 \cdot 4x^2 + 4^2
+
<li><math>(x^2 -4)^2 = (x^2)^2 - 2 \times 4x^2 + 4^2
= x^4 -8x^2 +16</math></li>
= x^4 -8x^2 +16</math></li>
<li><math>(x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)</math><br/>
<li><math>(x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)</math><br/>
Line 144: Line 146:
<math>\phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8</math></li>
<math>\phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8</math></li>
<li><math>(x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)</math><br/>
<li><math>(x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)</math><br/>
-
<math>\phantom{(x-2)^3}{}=x \cdot x^2 + x\cdot (-4x) + x\cdot 4
+
<math>\phantom{(x-2)^3}{}=x \times x^2 + x\times (-4x) + x\times 4
-
- 2\cdot x^2 - 2 \cdot (-4x)-2 \cdot 4</math><br/>
+
- 2\times x^2 - 2 \times (-4x)-2 \times 4</math><br/>
<math>\phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8
<math>\phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8
= x^3-6x^2 + 12x -8</math></li>
= x^3-6x^2 + 12x -8</math></li>
Line 151: Line 153:
</div>
</div>
-
Kvadreringsreglerna används också i omvänd riktning för att faktorisera uttryck.
+
These rules are also used in the reverse direction to factorise expressions.
<div class="exempel">
<div class="exempel">
-
'''Exempel 6'''
+
''' Example 6'''
<ol type="a">
<ol type="a">
<li><math>x^2 + 2x+ 1 = (x+1)^2</math></li>
<li><math>x^2 + 2x+ 1 = (x+1)^2</math></li>
-
<li><math>x^6-4x^3 +4 = (x^3)^2 - 2\cdot 2x^3 +2^2 = (x^3-2)^2</math></li>
+
<li><math>x^6-4x^3 +4 = (x^3)^2 - 2\times 2x^3 +2^2 = (x^3-2)^2</math></li>
-
<li><math>x^2 +x + \frac{1}{4} = x^2 + 2\cdot\frac{1}{2}x
+
<li><math>x^2 +x + \frac{1}{4} = x^2 + 2\times\frac{1}{2}x
+ \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2</math></li>
+ \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2</math></li>
</ol>
</ol>
Line 165: Line 167:
-
== Konjugatregeln ==
+
== Difference of two squares ==
-
Ett tredje specialfall av den första formeln i förra avsnittet är konjugatregeln
+
A third special case of the first formula in the last section is the difference of two squares rule.
<div class="regel">
<div class="regel">
-
'''Konjugatregeln:'''
+
'''Difference of two squares:'''
-
{{Fristående formel||<math>(a+b)(a-b) = a^2 -b^2</math>}}
+
{{Displayed math||<math>(a+b)(a-b) = a^2 -b^2</math>}}
</div>
</div>
-
Denna formel kan vi få fram direkt genom att utveckla vänsterledet
+
This formula can be obtained directly by expanding the left hand side
-
{{Fristående formel||<math>(a+b)(a-b)
+
{{Displayed math||<math>(a+b)(a-b)
= a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b)
= a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b)
= a^2 -ab+ab-b^2
= a^2 -ab+ab-b^2
Line 182: Line 184:
<div class="exempel">
<div class="exempel">
-
'''Exempel 7'''
+
''' Example 7'''
<ol type="a">
<ol type="a">
Line 195: Line 197:
-
== Rationella uttryck ==
+
== Rational expressions==
-
Räkning med algebraiska uttryck som innehåller bråk liknar till stor del vanlig bråkräkning.
+
Working with fractions containing algebraic expressions is very similar to carrying out ordinary calculations with fractions.
-
Multiplikation och division av bråkuttryck följer samma räkneregler som gäller för vanliga bråktal,
+
Multiplication and division of algebraic fractions follow the same rules that apply to ordinary fractions,
<div class="regel">
<div class="regel">
-
{{Fristående formel||<math> \frac{a}{b} \cdot \frac{c}{d}
+
{{Displayed math||<math> \frac{a}{b} \cdot \frac{c}{d}
-
= \frac{a\cdot c}{b\cdot d}
+
= \frac{a\, c}{b\, d}
-
\quad \mbox{och} \quad
+
\quad \mbox{and} \quad
\frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}}
\frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}}
-
= \frac{a\cdot d}{b\cdot c} \; \mbox{.}</math>}}
+
= \frac{a\, d}{b\, c} \; \mbox{.}</math>}}
</div>
</div>
<div class="exempel">
<div class="exempel">
-
'''Exempel 8'''
+
''' Example 8'''
<ol type="a">
<ol type="a">
-
<li><math>\frac{3x}{x-y} \cdot \frac{4x}{2x+y}
+
<li><math>\frac{3x}{x-y} \times \frac{4x}{2x+y}
-
= \frac{3x\cdot 4x}{(x-y)\cdot(2x+y)}
+
= \frac{3x\times 4x}{(x-y)\times(2x+y)}
= \frac{12x^2}{(x-y)(2x+y)}</math></li>
= \frac{12x^2}{(x-y)(2x+y)}</math></li>
<li><math>\frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}}
<li><math>\frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}}
Line 223: Line 225:
</div>
</div>
-
Förlängning av ett bråkuttryck innebär att vi multiplicerar täljare och nämnare med samma faktor
+
A fractional expression can have its numerator and denominator multiplied by the same factor
-
{{Fristående formel||<math>\frac{x+2}{x+1}
+
{{Displayed math||<math>\frac{x+2}{x+1}
= \frac{(x+2)(x+3)}{(x+1)(x+3)}
= \frac{(x+2)(x+3)}{(x+1)(x+3)}
= \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)}
= \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)}
= \dots</math>}}
= \dots</math>}}
-
Förkortning av ett bråkuttryck innebär att vi stryker faktorer som täljaren och nämnaren har gemensamt
+
We can cancel factors that the numerator and denominator have in common
-
 
+
{{Displayed math||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
-
{{Fristående formel||<math>\frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
+
= \frac{(x+2)(x+4)}{(x+1)(x+4)}
= \frac{(x+2)(x+4)}{(x+1)(x+4)}
= \frac{x+2}{x+1} \mbox{.}</math>}}
= \frac{x+2}{x+1} \mbox{.}</math>}}
<div class="exempel">
<div class="exempel">
-
'''Exempel 9'''
+
''' Example 9'''
<ol type="a">
<ol type="a">
Line 244: Line 245:
<li><math>\frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}</math></li>
<li><math>\frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}</math></li>
<li><math>\frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)}
<li><math>\frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)}
-
= \left\{\,\text{konjugatregeln}\,\right\}
+
= \left\{\,\text{Difference of two squares}\,\right\}
= \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)}
= \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)}
= \frac{x-y}{x+2}</math></li>
= \frac{x-y}{x+2}</math></li>
Line 250: Line 251:
</div>
</div>
-
När bråkuttryck adderas eller subtraheras behöver de, om så är nödvändigt, förlängas så att de får samma nämnare innan täljarna kan kombineras ihop,
+
When fractional expressions are added or subtracted they may need to be placed over a common denominator.
-
{{Fristående formel||<math>\frac{1}{x} - \frac{1}{x-1}
+
{{Displayed math||<math>\frac{1}{x} - \frac{1}{x-1}
-
= \frac{1}{x} \cdot \frac{x-1}{x-1} - \frac{1}{x-1} \cdot \frac{x}{x}
+
= \frac{1}{x} \times\frac{x-1}{x-1} - \frac{1}{x-1} \times\frac{x}{x}
= \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)}
= \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)}
= \frac{x-1-x}{x(x-1)}
= \frac{x-1-x}{x(x-1)}
= \frac{-1}{x(x-1)} \; \mbox{.}</math>}}
= \frac{-1}{x(x-1)} \; \mbox{.}</math>}}
-
Ofta försöker man förlänga med så lite som möjligt för att underlätta räknandet. Minsta gemensamma nämnare (MGN) är den gemensamma nämnare som innehåller minst antal faktorer.
+
As with ordinary fractions, it's possible to find a common denominator by simply multiplying the two denominators, but it is better to find the smallest, simplest expression that both denominators go into: the lowest common denominator or LCD.
<div class="exempel">
<div class="exempel">
-
'''Exempel 10'''
+
''' Example 10'''
<ol type="a">
<ol type="a">
-
<li><math>\frac{1}{x+1} + \frac{1}{x+2}\quad</math> har <math>\ \text{MGN}
+
<li><math>\frac{1}{x+1} + \frac{1}{x+2}\quad</math> has <math>\ \text{LCD}
= (x+1)(x+2)</math> <br><br>
= (x+1)(x+2)</math> <br><br>
-
Förläng den första termen med <math>(x+2)</math> och den andra termen med <math>(x+1)</math>
+
Convert the first term using <math>(x+2)</math> and the second term using <math>(x+1)</math>
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\frac{1}{x+1} + \frac{1}{x+2}
\frac{1}{x+1} + \frac{1}{x+2}
&= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt]
&= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt]
Line 273: Line 274:
= \frac{2x+3}{(x+1)(x+2)}\:\mbox{.}
= \frac{2x+3}{(x+1)(x+2)}\:\mbox{.}
\end{align*}</math>}}</li>
\end{align*}</math>}}</li>
-
<li><math>\frac{1}{x} + \frac{1}{x^2}\quad</math> har <math>\ \text{MGN}
+
<li><math>\frac{1}{x} + \frac{1}{x^2}\quad</math> has <math>\ \text{LCD}
= x^2</math><br><br>
= x^2</math><br><br>
-
Vi behöver bara förlänga den första termen för att få en gemensam nämnare
+
We only need to convert the first term to get a common denominator
-
{{Fristående formel||<math>\frac{1}{x} + \frac{1}{x^2}
+
{{Displayed math||<math>\frac{1}{x} + \frac{1}{x^2}
= \frac{x}{x^2} + \frac{1}{x^2}
= \frac{x}{x^2} + \frac{1}{x^2}
= \frac{x+1}{x^2}\,\mbox{.}</math>}}</li>
= \frac{x+1}{x^2}\,\mbox{.}</math>}}</li>
-
<li><math>\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad</math> har <math>\
+
<li><math>\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad</math> has <math>\
-
\text{MGN}= x^2(x+1)^2(x+2)</math><br><br>
+
\text{LCD}= x^2(x+1)^2(x+2)</math><br><br>
-
Den första termen förlängs med <math>x(x+2)</math> medan den andra termen förlängs med <math>(x+1)^2</math>
+
The first term is converted using <math>x(x+2)</math> while the other term is converted using <math>(x+1)^2</math>
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}
\frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}
&= \frac{x(x+2)}{x^2(x+1)^2(x+2)}
&= \frac{x(x+2)}{x^2(x+1)^2(x+2)}
Line 291: Line 292:
&= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.}
&= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.}
\end{align*}</math>}}</li>
\end{align*}</math>}}</li>
-
<li><math>\frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad</math> har <math>\
+
<li><math>\frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad</math> has <math>\
-
\text{MGN}=x(x-1)(x+1)</math><br><br>
+
\text{LCD}=x(x-1)(x+1)</math><br><br>
-
Vi förlänger alla termer så att de får den gemensamma nämnaren <math>x(x-1)(x+1)</math>
+
We must convert all the terms so that they have the common denominator <math>x(x-1)(x+1)</math>
-
{{Fristående formel||<math>\begin{align*}
+
{{Displayed math||<math>\begin{align*}
\frac{x}{x+1} - \frac{1}{x(x-1)} -1
\frac{x}{x+1} - \frac{1}{x(x-1)} -1
&= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
&= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
Line 307: Line 308:
</div>
</div>
-
Vid förenkling av större uttryck är det ofta nödvändigt att både förlänga och förkorta i steg. Eftersom förkortning förutsätter att vi kan faktorisera uttryck är det viktigt att försöka behålla uttryck (t.ex. nämnare) faktoriserade och inte utveckla något som vi senare behöver faktorisera.
+
To simplify large expressions it is often necessary both to cancel factors and to multiply numerators and denominators by factors. Where possible, therefore, we should keep expressions in a factorised form, and not expand expressions we will later need to factorise again.
<div class="exempel">
<div class="exempel">
-
'''Exempel 11'''
+
''' Example 11'''
<ol type="a">
<ol type="a">
Line 340: Line 341:
-
[[2.1 Övningar|Övningar]]
+
[[2.1 Exercises|Exercises]]
<div class="inforuta" style="width:580px;">
<div class="inforuta" style="width:580px;">
-
'''Råd för inläsning'''
+
'''Study advice'''
-
'''Grund- och slutprov'''
+
'''The basic and final tests'''
-
Efter att du har läst texten och arbetat med övningarna ska du göra grund- och slutprovet för att bli godkänd på detta avsnitt. Du hittar länken till proven i din student lounge.
+
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
-
'''Tänk på att:'''
+
'''Keep in mind that...'''
-
Var noggrann. Om du gör ett fel på ett ställe så kommer resten av uträkningen också vara fel.
+
If you make a mistake somewhere the rest of the calculation will be wrong, so be careful!
-
Använd många mellanled. Om du är osäker på en uträkning utför då hellre enkla steg än ett stort steg.
+
Use many intermediate steps. If you are unsure of a calculation do it in many small steps rather than one big step.
-
Utveckla inte i onödan. Du kan vid ett senare tillfälle vara tvungen att faktorisera tillbaka.
+
Do not expand unnecessarily. You later may be forced to factorise what you earlier expanded.
-
'''Lästips'''
+
'''Reviews
 +
'''
-
[http://en.wikipedia.org/wiki/Algebra Läs mer om algebra på engelska Wikipedia]
+
[http://en.wikipedia.org/wiki/Algebra Learn more about algebra in the English Wikipedia ]
-
[http://www.jamesbrennan.org/algebra/ Understanding Algebra - engelsk textbok på nätet]
+
[http://www.jamesbrennan.org/algebra/ Understanding Algebra - English text on the Web ]
-
'''Länktips'''
+
'''Useful web sites'''
</div>
</div>

Current revision

       Theory          Exercises      

Contents:

  • Distributive law
  • Expansion and factorisation
  • Difference of two squares
  • Rational expressions

Learning outcomes:

After this section you will have learned how to:

  • Simplify complicated algebraic expressions.
  • Factorise expressions, including perfect squares and the difference of two squares.
  • Expand expressions, including perfect squares and the difference of two squares.

Distributive Law

The distributive law specifies how to multiply a bracketed expression by a factor.

[Image]

Example 1

  1. \displaystyle 4(x+y) = 4x + 4y
  2. \displaystyle 2(a-b) = 2a -2b
  3. \displaystyle x \left(\frac{1}{x} + \frac{1}{x^2} \right) = x\times \frac{1}{x} + x \times \frac{1}{x^2} = \frac{\not{x}}{\not{x}} + \frac{\not{x}}{x^{\not{2}}} = 1 + \frac{1}{x}
  4. \displaystyle a(x+y+z) = ax + ay + az

Using the distributive law we can also see how to tackle a minus sign in front of a bracketed expression. The rule says that a minus sign in front of a bracket can be eliminated if all the terms inside the brackets switch signs.

Example 2

  1. \displaystyle -(x+y) = (-1) \times (x+y) = (-1)x + (-1)y = -x-y
  2. \displaystyle -(x^2-x) = (-1) \times (x^2-x) = (-1)x^2 -(-1)x = -x^2 +x
    where we have in the final step used \displaystyle -(-1)x = (-1)(-1)x = 1\times x = x\,\mbox{.}
  3. \displaystyle -(x+y-y^3) = (-1)\times (x+y-y^3) = (-1)\times x + (-1) \times y -(-1)\times y^3
    \displaystyle \phantom{-(x+y-y^3)}{} = -x-y+y^3
  4. \displaystyle x^2 - 2x -(3x+2) = x^2 -2x -3x-2 = x^2 -(2+3)x -2
    \displaystyle \phantom{x^2-2x-(3x+2)}{} = x^2 -5x -2

Applying the distributive law this way round - converting a product of factors into a sum of terms - is called expanding. If the distributive law is applied in reverse we say we “factorise” the expression. We usually want to factorise as thoroughly as possible, by identifying the highet factor shared by all the terms.

Example 3

  1. \displaystyle 3x +9y = 3x + 3\times 3y = 3(x+3y)
  2. \displaystyle xy + y^2 = xy + y\times y = y(x+y)
  3. \displaystyle 2x^2 -4x = 2x\times x - 2\times 2\times x = 2x(x-2)
  4. \displaystyle \frac{y-x}{x-y} = \frac{-(x-y)}{x-y} = \frac{-1}{1} = -1


Squaring

On occasions the distributive law has to be used repeatedly to deal with larger expressions. If we consider

\displaystyle (a+b)(c+d)

and regard \displaystyle a+b as a factor that multiplies the bracketed expression \displaystyle (c+d) we get

\displaystyle \eqalign{
 \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,(c+d)
   &= \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,c
      + \bbox[#AAEEFF,0pt]{\phantom{(a+b)}}\,d\mbox{,}\cr
 (a+b)\,(c+d)
   &= (a+b)\,c + (a+b)\,d\mbox{.}}

Then the \displaystyle c and the \displaystyle d are multiplied into their respective brackets,

\displaystyle (a+b)c + (a+b)d = ac + bc + ad + bd \, \mbox{.}

A mnemonic for this formula is:

[Image]

Example 4

  1. \displaystyle (x+1)(x-2) = x\times x + x \times (-2) + 1 \times x + 1 \times (-2) = x^2 -2x+x-2
    \displaystyle \phantom{(x+1)(x-2)}{}=x^2 -x-2
  2. \displaystyle 3(x-y)(2x+1) = 3(x\times 2x + x\times 1 - y \times 2x - y \times 1) = 3(2x^2 +x-2xy-y)
    \displaystyle \phantom{3(x-y)(2x+1)}{}=6x^2 +3x-6xy-3y
  3. \displaystyle (1-x)(2-x) = 1\times 2 + 1 \times (-x) -x\times 2 - x\times (-x) = 2-x-2x+x^2
    \displaystyle \phantom{(1-x)(2-x)}{}=2-3x+x^2 where we have used \displaystyle -x\times (-x) = (-1)x \times (-1)x = (-1)^2 x^2 = 1\times x^2 = x^2.

Two important special cases of the above formula are when \displaystyle a+b and \displaystyle c+d are the same expression

\displaystyle (a+b)^2 = a^2 +2ab + b^2
\displaystyle (a-b)^2 = a^2 -2ab + b^2

Example 5

  1. \displaystyle (x+2)^2 = x^2 + 2\times 2x+ 2^2 = x^2 +4x +4
  2. \displaystyle (-x+3)^2 = (-x)^2 + 2\times 3(-x) + 3^2 = x^2 -6x +9
    where \displaystyle (-x)^2 = ((-1)x)^2 = (-1)^2 x^2 = 1 \times x^2 = x^2\,\mbox{.}
  3. \displaystyle (x^2 -4)^2 = (x^2)^2 - 2 \times 4x^2 + 4^2 = x^4 -8x^2 +16
  4. \displaystyle (x+1)^2 - (x-1)^2 = (x^2 +2x +1)- (x^2-2x+1)
    \displaystyle \phantom{(x+1)^2-(x-1)^2}{}= x^2 +2x +1 -x^2 + 2x-1
    \displaystyle \phantom{(x+1)^2-(x-1)^2}{} = 2x+2x = 4x
  5. \displaystyle (2x+4)(x+2) = 2(x+2)(x+2) = 2(x+2)^2 = 2(x^2 + 4x+ 4)
    \displaystyle \phantom{(2x+4)(x+2)}{}=2x^2 + 8x + 8
  6. \displaystyle (x-2)^3 = (x-2)(x-2)^2 = (x-2)(x^2-4x+4)
    \displaystyle \phantom{(x-2)^3}{}=x \times x^2 + x\times (-4x) + x\times 4 - 2\times x^2 - 2 \times (-4x)-2 \times 4
    \displaystyle \phantom{(x-2)^3}{}=x^3 -4x^2 + 4x-2x^2 +8x -8 = x^3-6x^2 + 12x -8

These rules are also used in the reverse direction to factorise expressions.

Example 6

  1. \displaystyle x^2 + 2x+ 1 = (x+1)^2
  2. \displaystyle x^6-4x^3 +4 = (x^3)^2 - 2\times 2x^3 +2^2 = (x^3-2)^2
  3. \displaystyle x^2 +x + \frac{1}{4} = x^2 + 2\times\frac{1}{2}x + \bigl(\frac{1}{2}\bigr)^2 = \bigl(x+\frac{1}{2}\bigr)^2


Difference of two squares

A third special case of the first formula in the last section is the difference of two squares rule.

Difference of two squares:

\displaystyle (a+b)(a-b) = a^2 -b^2

This formula can be obtained directly by expanding the left hand side

\displaystyle (a+b)(a-b)
 = a \cdot a + a\cdot (-b) + b\cdot a + b \cdot (-b)
 = a^2 -ab+ab-b^2
 = a^2 -b^2\mbox{.}

Example 7

  1. \displaystyle (x-4y)(x+4y) = x^2 -(4y)^2 = x^2 -16y^2
  2. \displaystyle (x^2+2x)(x^2-2x)= (x^2)^2 - (2x)^2 = x^4 -4x^2
  3. \displaystyle (y+3)(3-y)= (3+y)(3-y) = 3^2 -y^2 = 9-y^2
  4. \displaystyle x^4 -16 = (x^2)^2 -4^2 = (x^2+4)(x^2-4) = (x^2+4)(x^2-2^2)
    \displaystyle \phantom{x^4-16}{}=(x^2+4)(x+2)(x-2)


Rational expressions

Working with fractions containing algebraic expressions is very similar to carrying out ordinary calculations with fractions.

Multiplication and division of algebraic fractions follow the same rules that apply to ordinary fractions,

\displaystyle \frac{a}{b} \cdot \frac{c}{d}
 = \frac{a\, c}{b\, d}
 \quad \mbox{and} \quad
 \frac{\displaystyle\ \frac{a}{b}\ }{\displaystyle\frac{c}{d}}
 = \frac{a\, d}{b\, c} \; \mbox{.}

Example 8

  1. \displaystyle \frac{3x}{x-y} \times \frac{4x}{2x+y} = \frac{3x\times 4x}{(x-y)\times(2x+y)} = \frac{12x^2}{(x-y)(2x+y)}
  2. \displaystyle \frac{\displaystyle \frac{a}{x}}{\displaystyle \frac{x+1}{a}} = \frac{a^2}{x(x+1)}
  3. \displaystyle \frac{\displaystyle \frac{x}{(x+1)^2}}{\displaystyle \frac{x-2}{x-1}} = \frac{x(x-1)}{(x-2)(x+1)^2}

A fractional expression can have its numerator and denominator multiplied by the same factor

\displaystyle \frac{x+2}{x+1}
 = \frac{(x+2)(x+3)}{(x+1)(x+3)}
 = \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4)}
 = \dots

We can cancel factors that the numerator and denominator have in common

\displaystyle \frac{(x+2)(x+3)(x+4)}{(x+1)(x+3)(x+4) }
 = \frac{(x+2)(x+4)}{(x+1)(x+4)}
 = \frac{x+2}{x+1} \mbox{.}

Example 9

  1. \displaystyle \frac{x}{x+1} = \frac{x}{x+1} \cdot \frac{x+2}{x+2} = \frac{x(x+2)}{(x+1)(x+2)}
  2. \displaystyle \frac{x^2 -1}{x(x^2-1)}= \frac{1}{x}
  3. \displaystyle \frac{(x^2-y^2)(x-2)}{(x^2-4)(x+y)} = \left\{\,\text{Difference of two squares}\,\right\} = \frac{(x+y)(x-y)(x-2)}{(x+2)(x-2)(x+y)} = \frac{x-y}{x+2}

When fractional expressions are added or subtracted they may need to be placed over a common denominator.

\displaystyle \frac{1}{x} - \frac{1}{x-1}
 = \frac{1}{x} \times\frac{x-1}{x-1} - \frac{1}{x-1} \times\frac{x}{x}
 = \frac{x-1}{x(x-1)} - \frac{x}{x(x-1)}
 = \frac{x-1-x}{x(x-1)}
 = \frac{-1}{x(x-1)} \; \mbox{.}

As with ordinary fractions, it's possible to find a common denominator by simply multiplying the two denominators, but it is better to find the smallest, simplest expression that both denominators go into: the lowest common denominator or LCD.

Example 10

  1. \displaystyle \frac{1}{x+1} + \frac{1}{x+2}\quad has \displaystyle \ \text{LCD} = (x+1)(x+2)

    Convert the first term using \displaystyle (x+2) and the second term using \displaystyle (x+1)
    \displaystyle \begin{align*}
       \frac{1}{x+1} + \frac{1}{x+2}
         &= \frac{x+2}{(x+1)(x+2)} + \frac{x+1}{(x+2)(x+1)}\\[4pt]
         &= \frac{x+2+x+1}{(x+1)(x+2)}
          = \frac{2x+3}{(x+1)(x+2)}\:\mbox{.}
       \end{align*}
    
  2. \displaystyle \frac{1}{x} + \frac{1}{x^2}\quad has \displaystyle \ \text{LCD} = x^2

    We only need to convert the first term to get a common denominator
    \displaystyle \frac{1}{x} + \frac{1}{x^2}
       = \frac{x}{x^2} + \frac{1}{x^2}
       = \frac{x+1}{x^2}\,\mbox{.}
    
  3. \displaystyle \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}\quad has \displaystyle \ \text{LCD}= x^2(x+1)^2(x+2)

    The first term is converted using \displaystyle x(x+2) while the other term is converted using \displaystyle (x+1)^2
    \displaystyle \begin{align*}
       \frac{1}{x(x+1)^2} - \frac{1}{x^2(x+2)}
         &= \frac{x(x+2)}{x^2(x+1)^2(x+2)}
            - \frac{(x+1)^2}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x}{x^2(x+1)^2(x+2)} - \frac{x^2+2x+1}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x-(x^2+2x+1)}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{x^2+2x-x^2-2x-1}{x^2(x+1)^2(x+2)}\\[4pt]
         &= \frac{-1}{x^2(x+1)^2(x+2)}\,\mbox{.}
       \end{align*}
    
  4. \displaystyle \frac{x}{x+1} - \frac{1}{x(x-1)} -1 \quad has \displaystyle \ \text{LCD}=x(x-1)(x+1)

    We must convert all the terms so that they have the common denominator \displaystyle x(x-1)(x+1)
    \displaystyle \begin{align*}
       \frac{x}{x+1} - \frac{1}{x(x-1)} -1
         &= \frac{x^2(x-1)}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
            - \frac{x(x-1)(x+1)}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2}{x(x-1)(x+1)} - \frac{x+1}{x(x-1)(x+1)}
            - \frac{x^3 -x}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2 -(x+1) -(x^3-x)}{x(x-1)(x+1)}\\[4pt]
         &= \frac{x^3-x^2 -x-1 -x^3+x}{x(x-1)(x+1)}\\[4pt]
         &= \frac{-x^2-1}{x(x-1)(x+1)}\,\mbox{.}
       \end{align*}
    

To simplify large expressions it is often necessary both to cancel factors and to multiply numerators and denominators by factors. Where possible, therefore, we should keep expressions in a factorised form, and not expand expressions we will later need to factorise again.

Example 11

  1. \displaystyle \frac{1}{x-2} - \frac{4}{x^2-4} = \frac{1}{x-2} - \frac{4}{(x+2)(x-2)} = \left\{\,\mbox{MGN} = (x+2)(x-2)\,\right\}

    \displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2}{(x+2)(x-2)} - \frac{4}{(x+2)(x-2)}

    \displaystyle \phantom{\frac{1}{x-2} - \frac{4}{x^2-4}}{} = \frac{x+2 -4}{(x+2)(x-2)} = \frac{x-2}{(x+2)(x-2)} = \frac{1}{x+2}
  2. \displaystyle \frac{x + \displaystyle \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2}{x} + \frac{1}{x}}{x^2+1} = \frac{\displaystyle \frac{x^2+1}{x}}{x^2+1} = \frac{x^2+1}{x(x^2+1)} = \frac{1}{x}
  3. \displaystyle \frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y} = \frac{\displaystyle \frac{y^2}{x^2y^2} - \frac{x^2}{x^2y^2}}{x+y} = \frac{\displaystyle \frac{y^2-x^2}{x^2y^2}}{x+y} = \frac{y^2-x^2}{x^2y^2(x+y)}

    \displaystyle \phantom{\smash{\frac{\displaystyle \frac{1}{x^2} - \frac{1}{y^2}}{x+y}}}{} = \frac{(y+x)(y-x)}{x^2y^2(x+y)} = \frac{y-x}{x^2y^2}


Exercises


Study advice

The basic and final tests

After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.


Keep in mind that...

If you make a mistake somewhere the rest of the calculation will be wrong, so be careful!

Use many intermediate steps. If you are unsure of a calculation do it in many small steps rather than one big step.

Do not expand unnecessarily. You later may be forced to factorise what you earlier expanded.


Reviews

Learn more about algebra in the English Wikipedia

Understanding Algebra - English text on the Web


Useful web sites