1.3 Powers
From Förberedande kurs i matematik 1
(Idiomatic English, localisation of terminology and notation) |
|||
(18 intermediate revisions not shown.) | |||
Line 2: | Line 2: | ||
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | {| border="0" cellspacing="0" cellpadding="0" height="30" width="100%" | ||
| style="border-bottom:1px solid #797979" width="5px" | | | style="border-bottom:1px solid #797979" width="5px" | | ||
- | {{ | + | {{Selected tab|[[1.3 Powers|Theory]]}} |
- | {{ | + | {{Not selected tab|[[1.3 Exercises|Exercises]]}} |
| style="border-bottom:1px solid #797979" width="100%"| | | style="border-bottom:1px solid #797979" width="100%"| | ||
|} | |} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Content: ''' |
- | * | + | * Positive integer exponent |
- | * | + | * Negative integer exponent |
- | * | + | * Rational exponents |
- | * | + | * Laws of exponents |
}} | }} | ||
{{Info| | {{Info| | ||
- | ''' | + | '''Learning outcomes:''' |
- | + | After this section you will have learned to: | |
- | * | + | * Recognise the concepts of base and exponent. |
- | * | + | *Calculate integer power expressions. |
- | * | + | *Use the laws of indices to simplify expressions containing powers. |
- | * | + | * Know when the laws of indices are applicable. |
- | * | + | *Determine which of two powers is the larger based on a comparison of the base or exponent/index. |
}} | }} | ||
- | == | + | == Integer exponents == |
- | + | We use the multiplication symbol as a shorthand for repeated addition of the same number. For example: | |
- | + | ||
- | {{ | + | {{Displayed math||<math>4 + 4 + 4 + 4 + 4 = 4 \times 5\mbox{.}</math>}} |
- | + | In a similar way we use exponentials as a short-hand for repeated multiplication | |
+ | of the same number: | ||
- | {{ | + | {{Displayed math||<math> 4 \times 4 \times 4 \times 4 \times 4 = 4^5\mbox{.}</math>}} |
- | + | The 4 is called the base of the power and the 5 is its exponent or index (pl. indices). | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | '''Example 1 ''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>5^3 = 5 \ | + | <li><math>5^3 = 5 \times 5 \times 5 |
= 125</math></li> | = 125</math></li> | ||
<li><math>10^5 | <li><math>10^5 | ||
- | = 10 \ | + | = 10 \times 10 \times 10 \times 10 \times 10 = 100 000</math></li> |
- | <li><math>0{ | + | <li><math>0{.}1^3 |
- | = 0{ | + | = 0\text{.}1 \times 0\text{.}1 \times 0\text{.}1 = 0\text{.}001</math></li> |
<li><math>(-2)^4 | <li><math>(-2)^4 | ||
- | = (-2) \ | + | = (-2) \times (-2) \times (-2) \times (-2)= 16</math>, but <math> -2^4 |
- | = -(2^4) = - (2 \ | + | = -(2^4) = - (2 \times 2 \times 2 \times 2) = -16</math></li> |
- | <li><math> 2\ | + | <li><math> 2\times 3^2 = 2 \times 3 \times 3 = 18</math>, but <math> |
- | (2\ | + | (2\times3)^2 = 6^2 = 36</math></li> |
</ol> | </ol> | ||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | '''Example 2''' |
<ol type="a"> | <ol type="a"> | ||
<li><math> | <li><math> | ||
\left(\displaystyle\frac{2}{3}\right)^3 | \left(\displaystyle\frac{2}{3}\right)^3 | ||
- | = \displaystyle\frac{2}{3}\ | + | = \displaystyle\frac{2}{3}\times \displaystyle\frac{2}{3} |
- | \ | + | \times \displaystyle\frac{2}{3} |
= \displaystyle\frac{2^3}{3^3} | = \displaystyle\frac{2^3}{3^3} | ||
= \displaystyle\frac{8}{27}</math></li> | = \displaystyle\frac{8}{27}</math></li> | ||
- | <li><math>(2\ | + | <li><math>(2\times 3)^4 |
- | = (2\ | + | = (2\times 3)\times(2\times 3)\times(2\times 3)\times(2\times 3)</math><br> |
- | <math>\phantom{(2\ | + | <math>\phantom{(2\times 3)^4}{} |
- | = 2\ | + | = 2\times 2\times 2\times 2\times 3\times 3\times 3\times 3 |
- | = 2^4 \ | + | = 2^4 \times 3^4 = 1296</math></li> |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | The last example can be generalised to two useful rules when calculating powers: | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>\left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{and}\quad (ab)^m = a^m b^m\,\mbox{.}</math>}} |
</div> | </div> | ||
- | == | + | == Laws of exponents == |
- | + | There are a few more rules that lead on from the definition of power which are useful when performing calculations. You can see for example that | |
- | {{ | + | {{Displayed math||<math>2^3 \times 2^5 = \underbrace{\,2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm factors }} \times \underbrace{\,2\times 2\times 2\times 2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm factors }} = \underbrace{\,2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm factors}} = 2^{3+5} = 2^8\text{,}</math>}} |
- | + | which can be expressed more generally as | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>a^m \times a^n = a^{m+n}\mbox{.}</math>}} |
</div> | </div> | ||
- | + | There is also a useful simplification rule for the division of powers that have the same base. | |
- | {{ | + | {{Displayed math||<math>\frac{2^7}{2^3}=\displaystyle\frac{ 2\times 2\times 2\times 2\times \not{2}\times \not{2}\times \not{2} }{ \not{2}\times \not{2}\times \not{2}} = 2^{7-3}=2^4\mbox{.}</math>}} |
- | + | The general rule is | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>\displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.}</math>}} |
</div> | </div> | ||
- | + | For the case when the base itself is a power there is another useful rule. We see that | |
- | + | ||
- | {{ | + | {{Displayed math||<math> (5^2)^3 = 5^2 \times 5^2 \times 5^2 = \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \times \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \times \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm factors}} = \underbrace{\,5\times 5 \times 5 \times 5 \times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm times}\ 2\ {\rm factors}} = 5^{2 \times 3} = 5^6\mbox{}</math>}} |
- | + | and | |
- | {{ | + | {{Displayed math||<math> (5^3)^2 = 5^3\times5^3= \underbrace{\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} \times \underbrace{\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} = \underbrace{\,5\times 5 \times 5\,\times\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm times}\ 3\ {\rm factors}}=5^{3\times2}=5^6\mbox{.}</math>}} |
- | + | Generally, this can be written | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>(a^m)^n = a^{m\,n}\mbox{.} </math>}} |
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 3''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>2^9 \ | + | <li><math>2^9 \times 2^{14} |
= 2^{9+14} = 2^{23}</math></li> | = 2^{9+14} = 2^{23}</math></li> | ||
- | <li><math>5\ | + | <li><math>5\times5^3 |
- | = 5^1\ | + | = 5^1\times5^3 = 5^{1+3} = 5^4</math></li> |
- | <li><math>3^2 \ | + | <li><math>3^2 \times 3^3 \times 3^4 |
= 3^{2+3+4} = 3^9</math></li> | = 3^{2+3+4} = 3^9</math></li> | ||
- | <li><math>10^5 \ | + | <li><math>10^5 \times 1000 = 10^5 \times 10^3 = 10^{5+3} = 10^8</math></li> |
</ol> | </ol> | ||
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | '''Example 4''' |
<ol type="a"> | <ol type="a"> | ||
Line 143: | Line 142: | ||
</div> | </div> | ||
+ | Note that if a fraction has the same power expression in both the numerator and the denominator, then we can simplify in either of two ways: | ||
+ | |||
+ | {{Displayed math||<math>\frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{as well as}\quad \frac{5^3}{5^3} = \frac{ 5 \times 5 \times 5 }{ 5 \times 5 \times 5 } = \frac{125}{125} = 1\mbox{.}</math>}} | ||
- | + | So the only way to ensure that the rules of exponents agree is if we make the following natural definition. For all non-zero ''a'' we have | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math> a^0 = 1\mbox{.} </math>}} |
</div> | </div> | ||
- | + | We can also run into examples where the exponent in the denominator is greater than that in the numerator. For example we have | |
- | {{ | + | {{Displayed math||<math>\frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{and}\quad \frac{3^4}{3^6} = \frac{\not{3} \times \not{3} \times \not{3} \times \not{3} }{ \not{3} \times \not{3} \times \not{3} \times \not{3} \times 3 \times 3} = \frac{1}{3 \times 3} = \frac{1}{3^2}\mbox{.}</math>}} |
- | + | It is therefore necessary that we assume that | |
- | {{ | + | {{Displayed math||<math>3^{-2} = \frac{1}{3^2}\mbox{.}</math>}} |
- | + | Once more in the interests of consistency, the general definition for negative exponents is that for all non zero numbers ''a'', we have | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>a^{-n} = \frac{1}{a^n}\mbox{.}</math>}} |
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 5''' |
<ol type="a"> | <ol type="a"> | ||
<li><math>\frac{7^{1293}}{7^{1293}} | <li><math>\frac{7^{1293}}{7^{1293}} | ||
= 7^{1293 - 1293} = 7^0 = 1</math></li> | = 7^{1293 - 1293} = 7^0 = 1</math></li> | ||
- | <li><math>3^7 \ | + | <li><math>3^7 \times 3^{-9} \times 3^4 |
= 3^{7+(-9)+4} = 3^2</math></li> | = 3^{7+(-9)+4} = 3^2</math></li> | ||
- | <li><math>0{ | + | <li><math>0{.}001 = \frac{1}{1000} |
= \frac{1}{10^3} = 10^{-3}</math></li> | = \frac{1}{10^3} = 10^{-3}</math></li> | ||
- | <li><math>0{ | + | <li><math>0{.}008 = \frac{8}{1000} |
= \frac{1}{125} = \frac{1}{5^3} = 5^{-3}</math></li> | = \frac{1}{125} = \frac{1}{5^3} = 5^{-3}</math></li> | ||
<li><math>\left(\frac{2}{3}\right)^{-1} | <li><math>\left(\frac{2}{3}\right)^{-1} | ||
= \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1} | = \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1} | ||
- | = 1\ | + | = 1\times \frac{3}{2} = \frac{3}{2}</math></li> |
<li><math>\left(\frac{1}{3^2}\right)^{-3} | <li><math>\left(\frac{1}{3^2}\right)^{-3} | ||
- | = (3^{-2})^{-3} = 3^{(-2)\ | + | = (3^{-2})^{-3} = 3^{(-2)\times(-3)}=3^6</math></li> |
- | <li><math>0.01^5 = (10^{-2})^5 = 10^{-2 \ | + | <li><math>0.01^5 = (10^{-2})^5 = 10^{-2 \times 5} = 10^{-10}</math></li> |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | If the base of a power is <math>-1</math> then the expression will simplify to either <math>-1</math> or <math>+1</math> depending on the value of the exponent | |
- | {{ | + | {{Displayed math||<math>\eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{etc.}}</math>}} |
- | + | The rule is that <math>(-1)^n </math> is equal to <math>-1</math> | |
+ | if <math>n</math> is odd and equal to <math>+1</math> if <math>n</math> is even . | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 6''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>(-1)^{56} = 1\quad</math> | + | <li><math>(-1)^{56} = 1\quad</math> as <math>56</math> is an even number </li> |
- | <li><math>\frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad</math> | + | <li><math>\frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad</math> because 11 is an odd number </li> |
- | <li><math>\frac{(-2)^{127}}{2^{130}} = \frac{(-1 \ | + | <li><math>\frac{(-2)^{127}}{2^{130}} = \frac{(-1 \times 2)^{127}}{2^{130}} |
- | = \frac{(-1)^{127} \ | + | = \frac{(-1)^{127} \times 2^{127}}{2^{130}} |
- | = \frac{-1 \ | + | = \frac{-1 \times 2^{127}}{2^{130}}</math> |
<math>\phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3} | <math>\phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3} | ||
= - \frac{1}{2^3} = - \frac{1}{8}</math></li> | = - \frac{1}{2^3} = - \frac{1}{8}</math></li> | ||
Line 210: | Line 209: | ||
- | == | + | ==Changing the base == |
- | + | A point to observe is that when simplifying expressions one should try if possible to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base. It is therefore a good idea to learn to recognise the smaller powers of these numbers, such as: | |
- | {{ | + | {{Displayed math||<math>4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots</math>}} |
- | {{ | + | {{Displayed math||<math>9=3^2,\;\; 27=3^3,\;\; 81=3^4,\;\; 243=3^5,\;\ldots</math>}} |
- | {{ | + | {{Displayed math||<math>25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots</math>}} |
- | + | Similarly, one should become familiar with | |
- | {{ | + | {{Displayed math||<math>\frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots</math>}} |
- | {{ | + | {{Displayed math||<math>\frac{1}{9}=\frac{1}{3^2}=3^{-2},\;\; \frac{1}{27}=\frac{1}{3^3}=3^{-3},\;\ldots</math>}} |
- | {{ | + | {{Displayed math||<math>\frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots</math>}} |
- | + | and so on. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 7''' |
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Write <math>\ 8^3 \times 4^{-2} \times 16\ </math> as a power with base 2 |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | :<math>8^3 \ | + | :<math>8^3 \times 4^{-2} \times 16 = (2^3)^3 \times (2^2)^{-2} \times 2^4 = 2^{3 \times 3} \times 2^{2 \times (-2)} \times 2^4</math> |
- | :<math>\qquad\quad{}= 2^9 \ | + | :<math>\qquad\quad{}= 2^9 \times 2^{-4} \times 2^4 = 2^{9-4+4} =2^9</math></li> |
- | <li> | + | <li> Write <math>\ \frac{27^2 \times (1/9)^{-2}}{81^2}\ </math> as a power with base 3. |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | :<math>\frac{27^2 \ | + | :<math>\frac{27^2 \times (1/9)^{-2}}{81^2} = \frac{(3^3)^2 \times (1/3^2)^{-2}}{(3^4)^2} = \frac{(3^3)^2 \times (3^{-2})^{-2}}{(3^4)^2}</math> |
- | :<math>\qquad\quad{} = \frac{3^{3 \ | + | :<math>\qquad\quad{} = \frac{3^{3 \times 2} \times 3^{(-2) \times (-2)}}{3^{4 \times 2}} = \frac{3^6\times 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2</math></li> |
- | <li> | + | <li> Write <math>\frac{81 \times 32^2 \times (2/3)^2}{2^5+2^4}</math> in as simple a form as possible. |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | :<math>\frac{81 \ | + | :<math>\frac{81 \times 32^2 \times (2/3)^2}{2^5+2^4} = \frac{3^4 \times (2^5)^2 \times \displaystyle\frac{2^2}{3^2}}{2^{4+1}+2^4} = \frac{3^4 \times 2^{5 \times 2} \times \displaystyle\frac{2^2}{3^2}}{2^4 \times 2^1 +2^4} = \frac{3^4 \times 2^{10} \times \displaystyle\frac{2^2}{3^2}}{2^4 \times(2^1+1)}</math> |
- | :<math>\qquad\quad{} = \frac{ \displaystyle\frac{3^4 \ | + | :<math>\qquad\quad{} = \frac{ \displaystyle\frac{3^4 \times 2^{10} \times 2^2}{3^2}}{2^4 \times 3} = \frac{ 3^4 \times 2^{10} \times 2^2 }{3^2 \times 2^4 \times 3 } = 3^{4-2-1} \times 2^{10+2-4} = 3^1 \times 2^8= 3\times 2^8</math></li> |
</ol> | </ol> | ||
</div> | </div> | ||
- | == | + | == Rational exponents == |
- | + | What happens if a number is raised to a rational (that is, a fractional) exponent? Do the definitions and the rules we have used in the above calculations still hold? | |
- | + | For instance we note that | |
- | {{ | + | {{Displayed math||<math>2^{1/2} \times 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2.</math>}} |
- | + | That is, <math> 2^{1/2} </math> is the number that, when multiplied by itself, gives 2; in other words, <math>\sqrt2</math>. | |
- | + | Generally, we define | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>a^{1/2} = \sqrt{a}\mbox{.}</math>}} |
</div> | </div> | ||
- | + | (We must assume that <math>a\ge0</math> since negative numbers do not have real square roots. ) | |
- | + | We also see that, for example, | |
- | {{ | + | {{Displayed math||<math>5^{1/3} \times 5^{1/3} \times 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5</math>}} |
- | + | which implies that <math>\,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,</math>. This can be generalised to | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>a^{1/n} = \sqrt[\scriptstyle n]{a}\mbox{.}</math>}} |
</div> | </div> | ||
- | + | By combining this definition with one of our previous laws for exponents, namely <math>((a^m)^n=a^{m\cdot n})</math>, we have that for all <math>a\ge0</math>, the following holds: | |
<div class="regel"> | <div class="regel"> | ||
- | {{ | + | {{Displayed math||<math>a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m}</math>}} |
- | + | or alternatively | |
- | {{ | + | {{Displayed math||<math>a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.} </math>}} |
</div> | </div> | ||
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 8''' |
<ol type="a"> | <ol type="a"> | ||
<li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27} | <li><math>27^{1/3} = \sqrt[\scriptstyle 3]{27} | ||
- | = 3\quad</math> | + | = 3\quad</math> as <math>3 \times 3 \times 3 =27</math></li> |
<li><math>1000^{-1/3} = \frac{1}{1000^{1/3}} | <li><math>1000^{-1/3} = \frac{1}{1000^{1/3}} | ||
= \frac{1}{(10^3)^{1/3}} | = \frac{1}{(10^3)^{1/3}} | ||
- | = \frac{1}{10^{3 \ | + | = \frac{1}{10^{3 \times \frac{1}{3}}} = \frac{1}{10^1} |
= \frac{1}{10}</math></li> | = \frac{1}{10}</math></li> | ||
<li><math>\frac{1}{\sqrt{8}} | <li><math>\frac{1}{\sqrt{8}} | ||
Line 309: | Line 308: | ||
- | == | + | ==Comparison of powers == |
- | + | If we do not have access to calculators and wish to compare the size of powers, we can sometimes do this by comparing bases or exponents. | |
- | + | If the base of a power is greater than <math>1</math> then the power increases as the exponent increases. On the other hand, if the base lies between <math>0</math> and <math>1</math> then the power decreases as the exponent grows. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 9''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\quad 3^{5/6} > 3^{3/4}\quad</math> | + | <li><math>\quad 3^{5/6} > 3^{3/4}\quad</math> because the base <math>3</math> is greater than <math>1</math> and the first exponent <math>5/6</math> is greater than the second exponent <math>3/4</math>.</li> |
- | <li><math>\quad 3^{-3/4} > 3^{-5/6}\quad</math> | + | <li><math>\quad 3^{-3/4} > 3^{-5/6}\quad</math> as the base is greater than <math>1</math> and the exponents satisfy <math> -3/4 > - 5/6</math>.</li> |
- | <li><math> \quad 0{ | + | <li><math> \quad 0\text{.}3^5 < 0\text{.}3^4 \quad</math>as the base <math> 0\text{.}3</math> is between <math>0</math> and <math>1</math> and <math>5 > 4</math>. |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | If a power has a positive exponent it increases as the base increases. The opposite applies if the exponent is negative, that is to say the power decreases as the base increases. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 10''' |
<ol type="a"> | <ol type="a"> | ||
- | <li><math>\quad 5^{3/2} > 4^{3/2}\quad</math> | + | <li><math>\quad 5^{3/2} > 4^{3/2}\quad</math> as the base <math>5</math> is larger than the base <math>4</math> and both powers have the same positive exponent <math>3/2</math>.</li> |
- | <li><math> \quad 2^{-5/3} > 3^{-5/3}\quad</math> | + | <li><math> \quad 2^{-5/3} > 3^{-5/3}\quad</math> as the bases satisfy <math>2<3</math> and the powers have a negative exponent <math>-5/3</math>.</li> |
</ol> | </ol> | ||
</div> | </div> | ||
- | + | Sometimes powers need to be rewritten in order to determine the relative sizes. For example to compare <math>125^2</math> with <math>36^3</math> we can rewrite them as | |
- | {{ | + | {{Displayed math||<math> |
- | 125^2 = (5^3)^2 = 5^6\quad \text{ | + | 125^2 = (5^3)^2 = 5^6\quad \text{and}\quad 36^3 = (6^2)^3 = 6^6 |
</math>}} | </math>}} | ||
- | + | after which we see that <math>36^3 > 125^2</math>. | |
<div class="exempel"> | <div class="exempel"> | ||
- | ''' | + | ''' Example 11''' |
- | + | For each of the following pairs of numbers, determine which is the greater: | |
<ol type="a"> | <ol type="a"> | ||
- | <li><math> 25^{1/3} </math> | + | <li><math> 25^{1/3} </math> and <math> 5^{3/4} </math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | The base 25 can be rewritten in terms of the second base <math>5</math> by putting <math>25= 5\times 5= 5^2</math>. Therefore | |
- | {{ | + | {{Displayed math||<math>25^{1/3} = (5^2)^{1/3} = 5^{2 \times \frac{1}{3}}= 5^{2/3}\text{,}</math>}} |
- | + | hence we see that | |
- | {{ | + | {{Displayed math||<math>5^{3/4} > 25^{1/3} </math>}} |
- | + | since <math>\frac{3}{4} > \frac{2}{3}</math> and the base <math>5</math> is larger than <math>1</math>.</li> | |
- | <li><math>(\sqrt{8}\,)^5 </math> | + | <li><math>(\sqrt{8}\,)^5 </math> and <math>128</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | Both <math>8</math> and <math>128</math> can be written as powers of <math>2</math> | |
- | {{ | + | {{Displayed math||<math>\eqalign{8 &= 2\times 4 = 2 \times 2 \times 2 = 2^3\mbox{,}\\ 128 &= 2\times 64 = 2\times 2\times 32 = 2\times 2\times 2\times 16 = 2\times 2\times 2\times 2\times 8\\ &= 2\times 2\times 2\times 2\times 2^3 = 2^7\mbox{.}}</math>}} |
- | + | This gives | |
- | {{ | + | {{Displayed math||<math>\begin{align*} |
(\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2} | (\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2} | ||
- | = 2^{3\ | + | = 2^{3\times\frac{5}{2}}= 2^{15/2}\\ |
128 &= 2^7 = 2^{14/2} | 128 &= 2^7 = 2^{14/2} | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | and thus | |
- | {{ | + | {{Displayed math||<math>(\sqrt{8}\,)^5 > 128 </math>}} |
- | + | because <math>\frac{15}{2} > \frac{14}{2}</math> and the base <math>2</math> is greater than <math>1</math>.</li> | |
- | <li><math> (8^2)^{1/5} </math> | + | <li><math> (8^2)^{1/5} </math> and <math> (\sqrt{27}\,)^{4/5}</math>. |
<br> | <br> | ||
<br> | <br> | ||
- | + | Since <math>8=2^3</math> and <math>27=3^3</math>, the first step is to simplify and write the numbers as powers of <math>2</math> and <math>3</math> respectively, | |
- | {{ | + | {{Displayed math||<math>\begin{align*} |
- | (8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\ | + | (8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\times \frac{2}{5}} |
= 2^{6/5}\mbox{,}\\ | = 2^{6/5}\mbox{,}\\ | ||
(\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5} | (\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5} | ||
- | = 27^{ \frac{1}{2} \ | + | = 27^{ \frac{1}{2} \times \frac{4}{5}} = 27^{2/5} |
- | = (3^3)^{2/5} = 3^{3 \ | + | = (3^3)^{2/5} = 3^{3 \times \frac{2}{5}} |
= 3^{6/5}\mbox{.} | = 3^{6/5}\mbox{.} | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | Now we see that | |
- | {{ | + | {{Displayed math||<math>(\sqrt{27}\,)^{4/5} > (8^2)^{1/5} </math>}} |
- | + | because <math> 3>2</math> and exponent <math>\frac{6}{5}</math> is positive. | |
- | <li><math> 3^{1/3} </math> | + | <li><math> 3^{1/3} </math> and <math> 2^{1/2}</math> |
<br> | <br> | ||
<br> | <br> | ||
- | + | We rewrite the exponents due to them having a common denominator | |
- | {{ | + | {{Displayed math||<math>\frac{1}{3} = \frac{2}{6} \quad</math> and <math>\quad \frac{1}{2} = \frac{3}{6}</math>.}} |
- | + | This gives | |
- | {{ | + | {{Displayed math||<math>\begin{align*} |
3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\ | 3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\ | ||
2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6} | 2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6} | ||
\end{align*}</math>}} | \end{align*}</math>}} | ||
- | + | and we see that | |
- | {{ | + | {{Displayed math||<math> 3^{1/3} > 2^{1/2} </math>}} |
- | + | because <math> 9>8</math> and the exponent <math>1/6</math> is positive.</li> | |
</ol> | </ol> | ||
</div> | </div> | ||
- | [[1.3 | + | [[1.3 Exercises|Exercises]] |
<div class="inforuta" style="width:580px;"> | <div class="inforuta" style="width:580px;"> | ||
- | ''' | + | '''Study advice''' |
- | ''' | + | '''Basic and final tests''' |
- | + | After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge. | |
- | ''' | + | '''Keep in mind that...''' |
- | + | The number raised to the power 0 is always 1 as long as the number (the base) is not 0. | |
- | ''' | + | '''Reviews''' |
- | + | For those of you who want to deepen your studies or need more detailed explanations consider the following references | |
- | [http://en.wikipedia.org/wiki/Exponent | + | [http://en.wikipedia.org/wiki/Exponent Learn more about powers in the English Wikipedi] |
- | [http://primes.utm.edu/ | + | [http://primes.utm.edu/ What is the greatest prime number? Read more at The Prime Page] |
- | ''' | + | '''Useful web sites''' |
- | [http://www.ltcconline.net/greenl/java/BasicAlgebra/ExponentRules/ExponentRules.html | + | [http://www.ltcconline.net/greenl/java/BasicAlgebra/ExponentRules/ExponentRules.html Here you can practise the laws of exponents] |
</div> | </div> |
Current revision
Theory | Exercises |
Content:
- Positive integer exponent
- Negative integer exponent
- Rational exponents
- Laws of exponents
Learning outcomes:
After this section you will have learned to:
- Recognise the concepts of base and exponent.
- Calculate integer power expressions.
- Use the laws of indices to simplify expressions containing powers.
- Know when the laws of indices are applicable.
- Determine which of two powers is the larger based on a comparison of the base or exponent/index.
Integer exponents
We use the multiplication symbol as a shorthand for repeated addition of the same number. For example:
\displaystyle 4 + 4 + 4 + 4 + 4 = 4 \times 5\mbox{.} |
In a similar way we use exponentials as a short-hand for repeated multiplication of the same number:
\displaystyle 4 \times 4 \times 4 \times 4 \times 4 = 4^5\mbox{.} |
The 4 is called the base of the power and the 5 is its exponent or index (pl. indices).
Example 1
- \displaystyle 5^3 = 5 \times 5 \times 5 = 125
- \displaystyle 10^5 = 10 \times 10 \times 10 \times 10 \times 10 = 100 000
- \displaystyle 0{.}1^3 = 0\text{.}1 \times 0\text{.}1 \times 0\text{.}1 = 0\text{.}001
- \displaystyle (-2)^4 = (-2) \times (-2) \times (-2) \times (-2)= 16, but \displaystyle -2^4 = -(2^4) = - (2 \times 2 \times 2 \times 2) = -16
- \displaystyle 2\times 3^2 = 2 \times 3 \times 3 = 18, but \displaystyle (2\times3)^2 = 6^2 = 36
Example 2
- \displaystyle \left(\displaystyle\frac{2}{3}\right)^3 = \displaystyle\frac{2}{3}\times \displaystyle\frac{2}{3} \times \displaystyle\frac{2}{3} = \displaystyle\frac{2^3}{3^3} = \displaystyle\frac{8}{27}
- \displaystyle (2\times 3)^4
= (2\times 3)\times(2\times 3)\times(2\times 3)\times(2\times 3)
\displaystyle \phantom{(2\times 3)^4}{} = 2\times 2\times 2\times 2\times 3\times 3\times 3\times 3 = 2^4 \times 3^4 = 1296
The last example can be generalised to two useful rules when calculating powers:
\displaystyle \left(\displaystyle\frac{a}{b}\right)^m = \displaystyle\frac{a^m}{b^m} \quad \mbox{and}\quad (ab)^m = a^m b^m\,\mbox{.} |
Laws of exponents
There are a few more rules that lead on from the definition of power which are useful when performing calculations. You can see for example that
\displaystyle 2^3 \times 2^5 = \underbrace{\,2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 3\ {\rm factors }} \times \underbrace{\,2\times 2\times 2\times 2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 5\ {\rm factors }} = \underbrace{\,2\times 2\times 2\times 2\times 2\times 2\times 2\times 2\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ (3 + 5)\ {\rm factors}} = 2^{3+5} = 2^8\text{,} |
which can be expressed more generally as
\displaystyle a^m \times a^n = a^{m+n}\mbox{.} |
There is also a useful simplification rule for the division of powers that have the same base.
\displaystyle \frac{2^7}{2^3}=\displaystyle\frac{ 2\times 2\times 2\times 2\times \not{2}\times \not{2}\times \not{2} }{ \not{2}\times \not{2}\times \not{2}} = 2^{7-3}=2^4\mbox{.} |
The general rule is
\displaystyle \displaystyle\frac{a^m}{a^n}= a^{m-n}\mbox{.} |
For the case when the base itself is a power there is another useful rule. We see that
\displaystyle (5^2)^3 = 5^2 \times 5^2 \times 5^2 = \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \times \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{ 2\ {\rm factors}} \times \underbrace{\,5\times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm factors}} = \underbrace{\,5\times 5 \times 5 \times 5 \times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm times}\ 2\ {\rm factors}} = 5^{2 \times 3} = 5^6\mbox{} |
and
\displaystyle (5^3)^2 = 5^3\times5^3= \underbrace{\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} \times \underbrace{\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{3\ {\rm factors}} = \underbrace{\,5\times 5 \times 5\,\times\,5\times 5 \times 5\vphantom{{}_{\scriptscriptstyle 1}}\,}_{2\ {\rm times}\ 3\ {\rm factors}}=5^{3\times2}=5^6\mbox{.} |
Generally, this can be written
\displaystyle (a^m)^n = a^{m\,n}\mbox{.} |
Example 3
- \displaystyle 2^9 \times 2^{14} = 2^{9+14} = 2^{23}
- \displaystyle 5\times5^3 = 5^1\times5^3 = 5^{1+3} = 5^4
- \displaystyle 3^2 \times 3^3 \times 3^4 = 3^{2+3+4} = 3^9
- \displaystyle 10^5 \times 1000 = 10^5 \times 10^3 = 10^{5+3} = 10^8
Example 4
- \displaystyle \frac{3^{100}}{3^{98}} = 3^{100-98} = 3^2
- \displaystyle \frac{7^{10}}{7} = \frac{7^{10}}{7^1} = 7^{10-1} = 7^9
Note that if a fraction has the same power expression in both the numerator and the denominator, then we can simplify in either of two ways:
\displaystyle \frac{5^3}{5^3} = 5^{3-3} = 5^0\quad\text{as well as}\quad \frac{5^3}{5^3} = \frac{ 5 \times 5 \times 5 }{ 5 \times 5 \times 5 } = \frac{125}{125} = 1\mbox{.} |
So the only way to ensure that the rules of exponents agree is if we make the following natural definition. For all non-zero a we have
\displaystyle a^0 = 1\mbox{.} |
We can also run into examples where the exponent in the denominator is greater than that in the numerator. For example we have
\displaystyle \frac{3^4}{3^6} = 3^{4-6} = 3^{-2}\quad\text{and}\quad \frac{3^4}{3^6} = \frac{\not{3} \times \not{3} \times \not{3} \times \not{3} }{ \not{3} \times \not{3} \times \not{3} \times \not{3} \times 3 \times 3} = \frac{1}{3 \times 3} = \frac{1}{3^2}\mbox{.} |
It is therefore necessary that we assume that
\displaystyle 3^{-2} = \frac{1}{3^2}\mbox{.} |
Once more in the interests of consistency, the general definition for negative exponents is that for all non zero numbers a, we have
\displaystyle a^{-n} = \frac{1}{a^n}\mbox{.} |
Example 5
- \displaystyle \frac{7^{1293}}{7^{1293}} = 7^{1293 - 1293} = 7^0 = 1
- \displaystyle 3^7 \times 3^{-9} \times 3^4 = 3^{7+(-9)+4} = 3^2
- \displaystyle 0{.}001 = \frac{1}{1000} = \frac{1}{10^3} = 10^{-3}
- \displaystyle 0{.}008 = \frac{8}{1000} = \frac{1}{125} = \frac{1}{5^3} = 5^{-3}
- \displaystyle \left(\frac{2}{3}\right)^{-1} = \frac{1}{\displaystyle\left(\frac{2}{3}\right)^1} = 1\times \frac{3}{2} = \frac{3}{2}
- \displaystyle \left(\frac{1}{3^2}\right)^{-3} = (3^{-2})^{-3} = 3^{(-2)\times(-3)}=3^6
- \displaystyle 0.01^5 = (10^{-2})^5 = 10^{-2 \times 5} = 10^{-10}
If the base of a power is \displaystyle -1 then the expression will simplify to either \displaystyle -1 or \displaystyle +1 depending on the value of the exponent
\displaystyle \eqalign{(-1)^1 &= -1\cr (-1)^2 &= (-1)\cdot(-1) = +1\cr (-1)^3 &= (-1)\cdot(-1)^2 = (-1)\cdot 1 = -1\cr (-1)^4 &= (-1)\cdot(-1)^3 = (-1)\cdot (-1) = +1\cr \quad\hbox{etc.}} |
The rule is that \displaystyle (-1)^n is equal to \displaystyle -1 if \displaystyle n is odd and equal to \displaystyle +1 if \displaystyle n is even .
Example 6
- \displaystyle (-1)^{56} = 1\quad as \displaystyle 56 is an even number
- \displaystyle \frac{1}{(-1)^{11}} = \frac{1}{-1} = -1\quad because 11 is an odd number
- \displaystyle \frac{(-2)^{127}}{2^{130}} = \frac{(-1 \times 2)^{127}}{2^{130}} = \frac{(-1)^{127} \times 2^{127}}{2^{130}} = \frac{-1 \times 2^{127}}{2^{130}} \displaystyle \phantom{\frac{(-2)^{127}}{2^{130}}}{} = - 2^{127-130} = -2^{-3} = - \frac{1}{2^3} = - \frac{1}{8}
Changing the base
A point to observe is that when simplifying expressions one should try if possible to combine powers by choosing the same base. This often involves selecting 2, 3 or 5 as a base. It is therefore a good idea to learn to recognise the smaller powers of these numbers, such as:
\displaystyle 4=2^2,\;\; 8=2^3,\;\; 16=2^4,\;\; 32=2^5,\;\; 64=2^6,\;\; 128=2^7,\;\ldots |
\displaystyle 9=3^2,\;\; 27=3^3,\;\; 81=3^4,\;\; 243=3^5,\;\ldots |
\displaystyle 25=5^2,\;\; 125=5^3,\;\; 625=5^4,\;\ldots |
Similarly, one should become familiar with
\displaystyle \frac{1}{4}=\frac{1}{2^2} = 2^{-2},\;\; \frac{1}{8}=\frac{1}{2^3}=2^{-3},\;\; \frac{1}{16}=\frac{1}{2^4}=2^{-4},\;\ldots |
\displaystyle \frac{1}{9}=\frac{1}{3^2}=3^{-2},\;\; \frac{1}{27}=\frac{1}{3^3}=3^{-3},\;\ldots |
\displaystyle \frac{1}{25}=\frac{1}{5^2}=5^{-2},\;\; \frac{1}{125}=\frac{1}{5^3}=5^{-3},\;\ldots |
and so on.
Example 7
- Write \displaystyle \ 8^3 \times 4^{-2} \times 16\ as a power with base 2
- \displaystyle 8^3 \times 4^{-2} \times 16 = (2^3)^3 \times (2^2)^{-2} \times 2^4 = 2^{3 \times 3} \times 2^{2 \times (-2)} \times 2^4
- \displaystyle \qquad\quad{}= 2^9 \times 2^{-4} \times 2^4 = 2^{9-4+4} =2^9
- Write \displaystyle \ \frac{27^2 \times (1/9)^{-2}}{81^2}\ as a power with base 3.
- \displaystyle \frac{27^2 \times (1/9)^{-2}}{81^2} = \frac{(3^3)^2 \times (1/3^2)^{-2}}{(3^4)^2} = \frac{(3^3)^2 \times (3^{-2})^{-2}}{(3^4)^2}
- \displaystyle \qquad\quad{} = \frac{3^{3 \times 2} \times 3^{(-2) \times (-2)}}{3^{4 \times 2}} = \frac{3^6\times 3^4}{3^8} = \frac{3^{6 + 4}}{3^8}= \frac{3^{10}}{3^8} = 3^{10-8}= 3^2
- Write \displaystyle \frac{81 \times 32^2 \times (2/3)^2}{2^5+2^4} in as simple a form as possible.
- \displaystyle \frac{81 \times 32^2 \times (2/3)^2}{2^5+2^4} = \frac{3^4 \times (2^5)^2 \times \displaystyle\frac{2^2}{3^2}}{2^{4+1}+2^4} = \frac{3^4 \times 2^{5 \times 2} \times \displaystyle\frac{2^2}{3^2}}{2^4 \times 2^1 +2^4} = \frac{3^4 \times 2^{10} \times \displaystyle\frac{2^2}{3^2}}{2^4 \times(2^1+1)}
- \displaystyle \qquad\quad{} = \frac{ \displaystyle\frac{3^4 \times 2^{10} \times 2^2}{3^2}}{2^4 \times 3} = \frac{ 3^4 \times 2^{10} \times 2^2 }{3^2 \times 2^4 \times 3 } = 3^{4-2-1} \times 2^{10+2-4} = 3^1 \times 2^8= 3\times 2^8
Rational exponents
What happens if a number is raised to a rational (that is, a fractional) exponent? Do the definitions and the rules we have used in the above calculations still hold?
For instance we note that
\displaystyle 2^{1/2} \times 2^{1/2} = 2^{1/2 + 1/2} = 2^1 = 2. |
That is, \displaystyle 2^{1/2} is the number that, when multiplied by itself, gives 2; in other words, \displaystyle \sqrt2.
Generally, we define
\displaystyle a^{1/2} = \sqrt{a}\mbox{.} |
(We must assume that \displaystyle a\ge0 since negative numbers do not have real square roots. )
We also see that, for example,
\displaystyle 5^{1/3} \times 5^{1/3} \times 5^{1/3} = 5^{1/3 + 1/3 +1/3} = 5^1 = 5 |
which implies that \displaystyle \,5^{1/3} = \sqrt[\scriptstyle3]{5}\mbox{,}\,. This can be generalised to
\displaystyle a^{1/n} = \sqrt[\scriptstyle n]{a}\mbox{.} |
By combining this definition with one of our previous laws for exponents, namely \displaystyle ((a^m)^n=a^{m\cdot n}), we have that for all \displaystyle a\ge0, the following holds:
\displaystyle a^{m/n} = (a^m)^{1/n} = \sqrt[\scriptstyle n]{a^m} |
or alternatively
\displaystyle a^{m/n} = (a^{1/n})^m = (\sqrt[\scriptstyle n]{a}\,)^m\mbox{.} |
Example 8
- \displaystyle 27^{1/3} = \sqrt[\scriptstyle 3]{27} = 3\quad as \displaystyle 3 \times 3 \times 3 =27
- \displaystyle 1000^{-1/3} = \frac{1}{1000^{1/3}} = \frac{1}{(10^3)^{1/3}} = \frac{1}{10^{3 \times \frac{1}{3}}} = \frac{1}{10^1} = \frac{1}{10}
- \displaystyle \frac{1}{\sqrt{8}} = \frac{1}{8^{1/2}} = \frac{1}{(2^3)^{1/2}} = \frac{1}{2^{3/2}} = 2^{-3/2}
- \displaystyle \frac{1}{16^{-1/3}} = \frac{1}{(2^4)^{-1/3}} = \frac{1}{2^{-4/3}} = 2^{-(-4/3)}= 2^{4/3}
Comparison of powers
If we do not have access to calculators and wish to compare the size of powers, we can sometimes do this by comparing bases or exponents.
If the base of a power is greater than \displaystyle 1 then the power increases as the exponent increases. On the other hand, if the base lies between \displaystyle 0 and \displaystyle 1 then the power decreases as the exponent grows.
Example 9
- \displaystyle \quad 3^{5/6} > 3^{3/4}\quad because the base \displaystyle 3 is greater than \displaystyle 1 and the first exponent \displaystyle 5/6 is greater than the second exponent \displaystyle 3/4.
- \displaystyle \quad 3^{-3/4} > 3^{-5/6}\quad as the base is greater than \displaystyle 1 and the exponents satisfy \displaystyle -3/4 > - 5/6.
- \displaystyle \quad 0\text{.}3^5 < 0\text{.}3^4 \quadas the base \displaystyle 0\text{.}3 is between \displaystyle 0 and \displaystyle 1 and \displaystyle 5 > 4.
If a power has a positive exponent it increases as the base increases. The opposite applies if the exponent is negative, that is to say the power decreases as the base increases.
Example 10
- \displaystyle \quad 5^{3/2} > 4^{3/2}\quad as the base \displaystyle 5 is larger than the base \displaystyle 4 and both powers have the same positive exponent \displaystyle 3/2.
- \displaystyle \quad 2^{-5/3} > 3^{-5/3}\quad as the bases satisfy \displaystyle 2<3 and the powers have a negative exponent \displaystyle -5/3.
Sometimes powers need to be rewritten in order to determine the relative sizes. For example to compare \displaystyle 125^2 with \displaystyle 36^3 we can rewrite them as
\displaystyle
125^2 = (5^3)^2 = 5^6\quad \text{and}\quad 36^3 = (6^2)^3 = 6^6 |
after which we see that \displaystyle 36^3 > 125^2.
Example 11
For each of the following pairs of numbers, determine which is the greater:
- \displaystyle 25^{1/3} and \displaystyle 5^{3/4} .
The base 25 can be rewritten in terms of the second base \displaystyle 5 by putting \displaystyle 25= 5\times 5= 5^2. Therefore\displaystyle 25^{1/3} = (5^2)^{1/3} = 5^{2 \times \frac{1}{3}}= 5^{2/3}\text{,} hence we see that
\displaystyle 5^{3/4} > 25^{1/3} - \displaystyle (\sqrt{8}\,)^5 and \displaystyle 128.
Both \displaystyle 8 and \displaystyle 128 can be written as powers of \displaystyle 2\displaystyle \eqalign{8 &= 2\times 4 = 2 \times 2 \times 2 = 2^3\mbox{,}\\ 128 &= 2\times 64 = 2\times 2\times 32 = 2\times 2\times 2\times 16 = 2\times 2\times 2\times 2\times 8\\ &= 2\times 2\times 2\times 2\times 2^3 = 2^7\mbox{.}} This gives
\displaystyle \begin{align*} (\sqrt{8}\,)^5 &= (8^{1/2})^5 = (8)^{5/2} = (2^3)^{5/2} = 2^{3\times\frac{5}{2}}= 2^{15/2}\\ 128 &= 2^7 = 2^{14/2} \end{align*}
and thus
\displaystyle (\sqrt{8}\,)^5 > 128 - \displaystyle (8^2)^{1/5} and \displaystyle (\sqrt{27}\,)^{4/5}.
Since \displaystyle 8=2^3 and \displaystyle 27=3^3, the first step is to simplify and write the numbers as powers of \displaystyle 2 and \displaystyle 3 respectively,\displaystyle \begin{align*} (8^2)^{1/5} &= (8)^{2/5} = (2^3)^{2/5} = 2^{3\times \frac{2}{5}} = 2^{6/5}\mbox{,}\\ (\sqrt{27}\,)^{4/5} &= (27^{1/2})^{4/5} = 27^{ \frac{1}{2} \times \frac{4}{5}} = 27^{2/5} = (3^3)^{2/5} = 3^{3 \times \frac{2}{5}} = 3^{6/5}\mbox{.}
\end{align*}
Now we see that
\displaystyle (\sqrt{27}\,)^{4/5} > (8^2)^{1/5} because \displaystyle 3>2 and exponent \displaystyle \frac{6}{5} is positive.
- \displaystyle 3^{1/3} and \displaystyle 2^{1/2}
We rewrite the exponents due to them having a common denominator\displaystyle \frac{1}{3} = \frac{2}{6} \quad and \displaystyle \quad \frac{1}{2} = \frac{3}{6}. This gives
\displaystyle \begin{align*} 3^{1/3} &= 3^{2/6} = (3^2)^{1/6} = 9^{1/6}\\ 2^{1/2} &= 2^{3/6} = (2^3)^{1/6} = 8^{1/6}
\end{align*}
and we see that
\displaystyle 3^{1/3} > 2^{1/2}
Study advice
Basic and final tests
After you have read the text and worked through the exercises, you should do the basic and final tests to pass this section. You can find the link to the tests in your student lounge.
Keep in mind that...
The number raised to the power 0 is always 1 as long as the number (the base) is not 0.
Reviews
For those of you who want to deepen your studies or need more detailed explanations consider the following references
Learn more about powers in the English Wikipedi
What is the greatest prime number? Read more at The Prime Page
Useful web sites