Solution 4.3:9
From Förberedande kurs i matematik 1
m   | 
			|||
| Line 1: | Line 1: | ||
| - | Using the formula for double angles on   | + | Using the formula for double angles on <math>\sin 160^{\circ}</math> gives  | 
| - | <math>160^{\circ }</math>  | + | |
| - | gives  | + | |
| + | {{Displayed math||<math>\sin 160^{\circ} = 2\cos 80^{\circ}\sin 80^{\circ}\,\textrm{.}</math>}}  | ||
| - | <math>  | + | On the right-hand side, we see that the factor <math>\cos 80^{\circ}</math> has appeared, and if we use the formula for double angles on the second factor (<math>\sin 80^{\circ}</math>),  | 
| + | {{Displayed math||<math>2\cos 80^{\circ}\sin 80^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\sin 40^{\circ}\,,</math>}}  | ||
| - | + | we obtain a further factor <math>\cos 40^{\circ}</math>. A final application of the formula for double angles on <math>\sin 40^{\circ }</math> gives us all three cosine factors,  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | we obtain a further factor  | + | |
| - | <math>\cos 40^{\circ }</math>. A final application of the formula for double angles on   | + | |
| - | <math>\sin 40^{\circ }</math>  | + | |
| - | gives us all three cosine factors  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| + | {{Displayed math||<math>2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot\sin 40^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot 2\cos 20^{\circ}\sin 20^{\circ}\,\textrm{·}</math>}}  | ||
We have thus succeeded in showing that  | We have thus succeeded in showing that  | ||
| - | + | {{Displayed math||<math>\sin 160^{\circ} = 8\cos 80^{\circ}\cdot \cos 40^{\circ}\cdot \cos 20^{\circ}\cdot\sin 20^{\circ}</math>}}  | |
| - | <math>\sin 160^{\circ }=8\cos 80^{\circ }\  | + | |
| - | + | ||
which can also be written as   | which can also be written as   | ||
| + | {{Displayed math||<math>\cos 80^{\circ}\cdot\cos 40^{\circ}\cdot \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}}\,\textrm{.}</math>}}  | ||
| - | <math>  | + | [[Image:4_3_9.gif||right]]  | 
| + | If we draw the unit circle, we see that <math>160^{\circ}</math> makes an angle of   | ||
| + | <math>20^{\circ}</math> with the negative ''x''-axis, and therefore the angles   | ||
| + | <math>20^{\circ}</math> and <math>160^{\circ}</math> have the same ''y''-coordinate in the unit circle, i.e.  | ||
| - | + | <center><math>\sin 20^{\circ} = \sin 160^{\circ}\,\textrm{.}</math></center>  | |
| - | + | ||
| - | <  | + | |
| - | + | ||
| - | <math>20^{\circ }  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
This shows that  | This shows that  | ||
| - | + | <center><math>\cos 80^{\circ} \cos 40^{\circ} \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}} = \frac{1}{8}\,\textrm{.}</math></center>  | |
| - | <math>\cos 80^{\circ }  | + | |
Current revision
Using the formula for double angles on \displaystyle \sin 160^{\circ} gives
| \displaystyle \sin 160^{\circ} = 2\cos 80^{\circ}\sin 80^{\circ}\,\textrm{.} | 
On the right-hand side, we see that the factor \displaystyle \cos 80^{\circ} has appeared, and if we use the formula for double angles on the second factor (\displaystyle \sin 80^{\circ}),
| \displaystyle 2\cos 80^{\circ}\sin 80^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\sin 40^{\circ}\,, | 
we obtain a further factor \displaystyle \cos 40^{\circ}. A final application of the formula for double angles on \displaystyle \sin 40^{\circ } gives us all three cosine factors,
| \displaystyle 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot\sin 40^{\circ} = 2\cos 80^{\circ}\cdot 2\cos 40^{\circ}\cdot 2\cos 20^{\circ}\sin 20^{\circ}\,\textrm{·} | 
We have thus succeeded in showing that
| \displaystyle \sin 160^{\circ} = 8\cos 80^{\circ}\cdot \cos 40^{\circ}\cdot \cos 20^{\circ}\cdot\sin 20^{\circ} | 
which can also be written as
| \displaystyle \cos 80^{\circ}\cdot\cos 40^{\circ}\cdot \cos 20^{\circ} = \frac{\sin 160^{\circ}}{8\sin 20^{\circ}}\,\textrm{.} | 
If we draw the unit circle, we see that \displaystyle 160^{\circ} makes an angle of \displaystyle 20^{\circ} with the negative x-axis, and therefore the angles \displaystyle 20^{\circ} and \displaystyle 160^{\circ} have the same y-coordinate in the unit circle, i.e.
This shows that

