Solution 4.3:8a
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 4.3:8a moved to Solution 4.3:8a: Robot: moved page) |
m |
||
| (One intermediate revision not shown.) | |||
| Line 1: | Line 1: | ||
| - | {{ | + | We rewrite <math>\tan v</math> on the left-hand side as <math>\frac{\sin v}{\cos v}</math>, so that |
| - | < | + | |
| - | {{ | + | {{Displayed math||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.}</math>}} |
| + | |||
| + | If we then use the Pythagorean identity | ||
| + | |||
| + | {{Displayed math||<math>\cos^2\!v + \sin^2\!v = 1</math>}} | ||
| + | |||
| + | and rewrite <math>\cos^2\!v</math> in the denominator as <math>1 - \sin^2\!v</math>, we get what we are looking for on the right-hand side. The whole calculation is | ||
| + | |||
| + | {{Displayed math||<math>\tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.}</math>}} | ||
Current revision
We rewrite \displaystyle \tan v on the left-hand side as \displaystyle \frac{\sin v}{\cos v}, so that
| \displaystyle \tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v}\,\textrm{.} |
If we then use the Pythagorean identity
| \displaystyle \cos^2\!v + \sin^2\!v = 1 |
and rewrite \displaystyle \cos^2\!v in the denominator as \displaystyle 1 - \sin^2\!v, we get what we are looking for on the right-hand side. The whole calculation is
| \displaystyle \tan^2\!v = \frac{\sin^2\!v}{\cos^2\!v} = \frac{\sin^2\!v}{1-\sin^2\!v}\,\textrm{.} |
