Solution 4.3:4e
From Förberedande kurs i matematik 1
(Difference between revisions)
			  			                                                      
		          
			m   | 
			|||
| Line 1: | Line 1: | ||
The addition formula for sine gives us that  | The addition formula for sine gives us that  | ||
| + | {{Displayed math||<math>\sin\Bigl(v+\frac{\pi}{4}\Bigr) = \sin v\cdot\cos\frac{\pi }{4} + \cos v\cdot\sin\frac{\pi}{4}\,\textrm{.}</math>}}  | ||
| - | <math>\sin   | + | Because we know from exercise b that <math>\sin v = \sqrt{1-b^2}</math> we use that    | 
| + | <math>\cos (\pi/4) = \sin (\pi/4) = 1/\!\sqrt{2}</math> to obtain  | ||
| - | + | {{Displayed math||<math>\sin\Bigl(v+\frac{\pi }{4}\Bigr) = \sqrt{1-b^2}\cdot\frac{1}{\sqrt{2}} + b\cdot\frac{1}{\sqrt{2}}\,\textrm{.}</math>}}  | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | <math>  | + | |
| - | + | ||
| - | + | ||
| - | + | ||
Current revision
The addition formula for sine gives us that
| \displaystyle \sin\Bigl(v+\frac{\pi}{4}\Bigr) = \sin v\cdot\cos\frac{\pi }{4} + \cos v\cdot\sin\frac{\pi}{4}\,\textrm{.} | 
Because we know from exercise b that \displaystyle \sin v = \sqrt{1-b^2} we use that \displaystyle \cos (\pi/4) = \sin (\pi/4) = 1/\!\sqrt{2} to obtain
| \displaystyle \sin\Bigl(v+\frac{\pi }{4}\Bigr) = \sqrt{1-b^2}\cdot\frac{1}{\sqrt{2}} + b\cdot\frac{1}{\sqrt{2}}\,\textrm{.} | 
